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minF (x) = ( f1 (x), f2 (x),…, fm (x))
s.t    x ∈ D

Multiobjective Optimization Problem 
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o  Definition 

where 

 

o  Pareto domination 

o  Optimum 
•  Pareto set (PS) 
•  Pareto front (PF) 
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Pareto front (PF) 

Pareto set (PS) 
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D :   decision (variable)  space. 
fi :  D→ R,   objective function
F :  D→ Rm,  objective vector function
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o  Find an approximation set, 
which is 

•  as diverse as possible 
•  as close to the PF (PS) 

as possible 

Target of MOEA 
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Lower dimensional problems! 
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o  Reproduction 
•  Generate new trial solutions 

o  Selection 
•  Select fittest ones into the 

next generation 

A General MOEA Framework 
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Population 

New Solutions 

Reproduction Selection 
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o  Step 1: rank population 
•  dominance rank 
•  dominance count 
•  dominance strength 

o  Step 2: estimate density 
•  niche and fitness sharing 
•  crowding distance 
•  K-nearest neighbor 
•  gridding 

Dominance based Selection 
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Define a complete order over individuals! 
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o  Convert an MOP into an SOP 
•  Obj. = performance metric 

Indicator based Selection 
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Define a complete order over populations! 
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Model Guided Selection 
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o  Step 1: model the PF 

o  Step 2: choose reference points 

o  Step 3: select promising solutions 

Much work needs to be done along this direction! 

o  H. J. F. Moen, et al., Many-objective Optimization Using Taxi-Cab Surface Evolutionary 
Algorithm, EMO,  2013. 

o  H. Jain, and K. Deb, An improved Adaptive Appraoch for Elitist Nondominated Sorting 
Genetic Algorithm for Many-Objective Optimization, EMO, 2013. 
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AMS Framework 

o  A. Zhou, Estimation of Distribution Algorithms for Continuous Multiobjective Optimization, 
Ph.D Thesis, University of Essex, 2009. (Chapter 5.3) 

o  A. Zhou, Q. Zhang, Y. Jin, and B. Sendhoff, Combination of EDA and DE for 
Continuous Biobjective Optimization, CEC 2008.  

o  Q. Zhang and  H. Li,  MOEA/D: A Multiobjective Evolutionary Algorithm Based on 
Decomposition, IEEE Trans. on Evolutionary Computation,  2007. 
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Model PF 

Define sub-problem 

Select 
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Zero-order Approximation(AMS0) 

o  A single point to approximate the PF 

o  Model (ideal point) 

o  Distance to utopian PF (sub-problem) 

Approximation Model Guided Selection, EMO 2013 

Simple, but does not consider the shape of 
PF! 
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First-order Approximation(AMS1) 

o  A simplex to approximate the PF 

o  Model (vertices of simplex) 

o  Distance to simplex 
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Simple, and consider the shape of PF in a sense! 
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Settings 

o  Offspring reproduction operator 
•  A probability model based reproduction operator (RM-MEDA) 

o  Comparison strategy 
•  NDS: non-dominated sorting scheme (NSGA-II) 

o  Test instances 
•  8 instances with different properties 

o  Performance metric 
•  IGD: inverted general distance 

Approximation Model Guided Selection, EMO 2013 
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Convex PF 

NDS 
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AMS0 AMS1 
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Concave PF 

NDS 
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AMS0 AMS1 
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Tri-objective MOP 

NDS 
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AMS0 AMS1 
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Statistical Results 
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                NDS:1       AMS0:4        AMS1:4 
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o  AMS works better than NDS in most of the test instances 

o  AMS0 is more stable than AMS1 

o  AMS1 works better than AMS0 if a good simplex model can 
be found 
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order of model 

stability of AMS 

number of objectives 

stability of AMS 
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o  How to build a high-quality model? 
•  model should be cheap 
•  model should be stable 

o  What’s the performance on complicated problems? 
•  non-concave (non-convex) 
•  with disconnected PF 

o  What’s the performance on many-objective problems? 
•  interesting sub-problems (reference points, targets points) 

Approximation Model Guided Selection, EMO 2013 
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Thanks! 
 
 
 

The source code is available from amzhou@cs.ecnu.edu.cn 
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