A Theoretical Analysis of Curvature Based Preference Models

Pradyumn Shukla¹ Michael Emmerich² André Deutz²

¹Karlsruhe Institute of Technology – Institute AIFB

²Leiden University – LIACS

Given $m, n \in \mathbb{N}$ such that $m \ge 2$, a multi-objective optimization problem (MOP) is a 3-tuple (**F**, *X*, *C*) such that

- **F**(*x*) := (*F*₁(*x*), *F*₂(*x*), ..., *F_m*(*x*)) is a vector valued objective function
- $X \subseteq \mathbb{R}^n$ a feasible set
- C is a cone (set) that induces a partial ordering on \mathbb{R}^m

An Optimality Notion

Definition

A point $\hat{\mathbf{x}} \in X$ is C-optimal if $(\{F(\hat{\mathbf{x}})\} - C) \cap F(X) = \{F(\hat{\mathbf{x}})\}.$

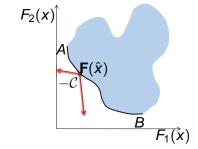


Image of \mathcal{C} -optimal points of a bicritetia problem

Let $X_p(\mathbf{F}, X, \mathcal{C})$ be the set of \mathcal{C} -optimal optimal points.

Definition

A preferred solution set, denoted by $X_{\mathcal{P}}(\mathbf{F}, X)$, is a proper subset of $X_{\rho}(\mathbf{F}, X, \mathbb{R}^m_+)$. The set $X_{\mathcal{P}}(\mathbf{F}, X)$ is said to be induced by a preference model \mathcal{P} .

Domination transformation: A (convex) cone $\mathcal{C} \supset \mathbb{R}^m_+$ exists such that

$$X_{\mathcal{P}}(\mathbf{F}, X) = X_{p}(\mathbf{F}, X, \mathcal{C})$$

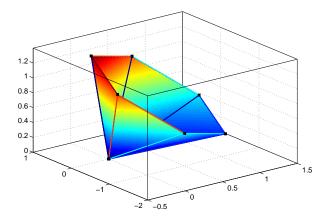
Objective transformation: A function $\mathbf{T} : \mathbb{R}^m \to \mathbb{R}^k$ exists such that

$$X_{\mathcal{P}}(\mathbf{F}, X) = X_{\rho}(\mathbf{T} \circ \mathbf{F}, X, \mathbb{R}^m_+)$$

Lemma

If $\mathbf{T} := \mathcal{A}$, where \mathcal{A} is a m by k matrix, then the above two transformations are equivalent and, \mathcal{C} is the polyhedral cone $\{d \in \mathbb{R}^m | Ad \ge \mathbf{0}\}$. In general, these do not imply each other.

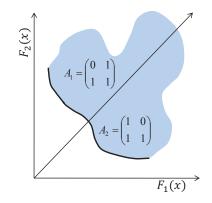
A Polyhedral Model



A polyhedral domination cone. The *k* can be much larger than *m*. Some real world applications use k = m(m - 1).

A Theoretical Analysis of Curvature Based Preference Models

A Piecewise Polyhedral Model



Piecewise polyhedral transformations of the objectives in the case of equitable efficiency. There are *m*! polyhedral transformation for an *m*-objective problem.

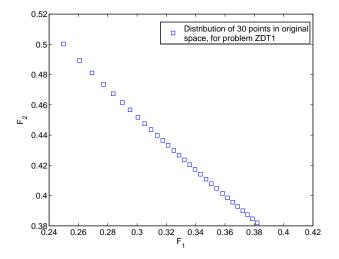
Algorithm: General cone-based hypervolume computation

Input: An *m* by *k* matrix A, points $S \subset \mathbb{R}^m$, and a reference point **r**

• Let
$$\mathbf{r}' = \mathcal{A}\mathbf{r}$$
.

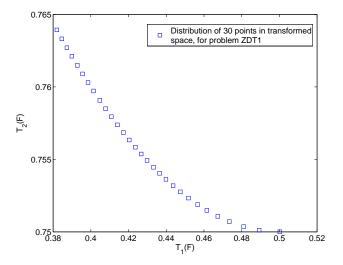
- 2 For all i = 1, ..., |S|, let $Q = \{q^{(1)}, ..., q^{|S|}\}$, with $q^{(i)} = As^{(i)}$.
- Sompute the standard hypervolume $HI(Q, \mathbf{r}')$.
- **3** Return CHI(S) = $(1/\det(\mathcal{A}^{\top}\mathcal{A})) \cdot HI(Q, \mathbf{r}')$.

An Application in Equitable Efficiency



Distribution of points in the original ZDT1 objective space

An Application in Equitable Efficiency



Distribution of points in the transformed ZDT1 objective space

- Analyzed various preference models
- Presented new theoretical results

- Analyzed various preference models
- Presented new theoretical results
- Proposed an algorithm to compute general cone based hypervolume
- Applied on a piecewise polyhedral preference model

- Analyzed various preference models
- Presented new theoretical results
- Proposed an algorithm to compute general cone based hypervolume
- Applied on a piecewise polyhedral preference model
- Many other details in the paper