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1. Introduction

This note documents a Mathematica program (called Toda.m) that embodies information about
the 2-local homotopy groups πn+kSn for 0 ≤ k ≤ 19. Most of the information is taken from Toda’s
book “Composition methods in homotopy groups of spheres”; a few additional facts are proved in
this note or quoted from elsewhere. The program does not do any serious calculations for itself,
it is merely a convenient way of organizing and accessing results obtained by traditional methods.
One can also do some automated consistency checking to detect any errors. I have tried to use a
fairly general framework so that other computations in unstable homotopy can be included later
if people are interested.

Here are some examples of things one can type, and the program’s response:

SpherePi[14,2]
Z2η5 ◦ ε6 ⊕ Z2µ5 ⊕ Z2ν5 ◦ ν8 ◦ ν11

HomotopySet[Sphere[7],Sphere[4]]
Zν4 ⊕ Z4ν

′

GroupType[SpherePi[19,10]]
Z2 ⊕ Z2 ⊕ Z2 ⊕ Z

ShowMap[Hopf,8,4]

π4
8

Hopf−−−→ π7
8

Z2ν4 ◦ η7 ⊕ Z2(Σν′) ◦ η7 Z2η7

ν4 ◦ η7 7→ η7

(Σν′) ◦ η7 7→ 0
ShowMap[Sigma,To[sigmaprime]]

π6
13

Σ−→ π7
14

Z4σ
′′ Z8σ

′

σ′′ 7→ 2σ′

Explain[o[nuprime,nu[7]]]

ν′ ◦ ν7 7→ 0
This takes place in the trivial group π10S

3 — see Toda’s Proposition 5.15

Remarks:
• I have not yet made a serious attempt to get the signs straight, and I have not been honest

about this deficiency either. The program will often report that x = y where Toda has
proved only that x = ±y. This should certainly be resolved in future, but that will require
a very careful and lengthy analysis of conventions and definitions.

• I have tried to resolve all other sources of indeterminacy, and to evaluate all compositions,
Hopf invariants and so on that Toda leaves open, but I have not been completely successful.
I would appreciate any help that may be on offer to answer the questions in Section 4.

• I have made rather little use of methods beyond those of Toda. In particular, I have barely
mentioned the unstable Adams spectral sequence, and I have not incorporated any of the
results in Mahowald’s memoir [2].
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• I have used the following formula for the Hopf invariant of a composite: for α ∈ πnSm

and β ∈ πmSi (with n > 1 and m, i > 0) we have

H(β ◦ α) = H(β) ◦ α + (Σi−1β) ◦ (Σm−1β) ◦H(α)

This is a special case of [1, Corollary III.6.3]. (Note that his γ2 is our H, and his β#β is
our (Σi−1β) ◦ (Σm−1β), whereas Toda’s β#β is β ∧ β = (Σiβ) ◦ (Σmβ).) It is apparently
well-known to the experts that the proof in [1] is incorrect. However, the formula is known
to become true after one suspension, and it is also true for easy reasons if either α or β
is a suspension. I do not know whether there are any cases in which the formula itself is
incorrect.

2. Mathematica notation

2.1. Abelian groups.

• The expression Group[{x1, d1}, . . . , {xr, dr}] represents an abelian group that is the direct
sum of cyclic groups of order di generated by elements xi. The order di may be Infinity.
Expressions of this form are displayed (by default) in traditional notation, for example
Group[{x,Infinity},{y,24}] is displayed as Zx⊕ Z24y. One can type FullForm[A] to
see the internal representation.

• An isomorphism class of finitely generated abelian groups is represented by an expression
of the form GType[d1, . . . , dr] with 1 < d1 ≤ . . . ≤ dr ≤ ∞; this represents

⊕
i Zdi

, where
Z∞ just means Z.

• If A is an expression of the form Group[. . . ], then GroupType[A] represents the isomorphism
class, GroupOrder[A] gives the order, GroupRank[A] gives the number of cyclic summands,
Generators[A] gives the list of generators of these summands, GroupExponent[A] gives
the exponent, and Elements[A] gives the list of all elements of A (if A is finite). The
boolean function FiniteQ[A] is true iff A is a finite group.

• The function ElementQ[a,A] will return True if a is visibly an integral linear combination
of the generators of A.

• The expression Coset[a, {x1, . . . , xr}] refers to the coset of a modulo the subgroup gener-
ated by the elements xi.

2.2. Spaces.

• The expression Sphere[n] represents the sphere Sn, which we officially define to be the
one-point compactification of Rn. There is no real sign issue in identifying this with
In/∂(In), or in identifying Sn ∧ Sm with Sn+m. There are sign issues in identifying Sn

with ∆n/∂(∆n) or with the space Sn
round := {x ∈ Rn+1 | ‖x‖ = 1}.

• We define ΣX = X ∧ S1. This is represented in Mathematica as Sigma[X]; the 4-fold
suspension of X (for example) can then be entered as SigmaIterate[4,X], but it will be
represented internally as Sigma[Sigma[Sigma[Sigma[X]]]].

• The expression OrthogonalGroup[n] represents the orthogonal group On.

2.3. Homotopy sets.

• The expression HomotopySet[X,Y] represents the set of homotopy classes of based maps
from X to Y . This will generally have at most one reasonable group structure. At present
we have no support for nonabelian groups, and no support for multiple group structures.

• The expression HomotopyGroup[n,X] refers to πnX. It is automatically converted to
HomotopySet[Sphere[n],X].

• The expression SpherePi[n,m] refers to Toda’s πm
n , which is a naturally defined subgroup

of πnSm such that πnSm = πm
n ⊕ (odd torsion). We will probably redefine it later to refer

to πnSm itself. There is ambiguity about this in the code at the moment.
• The expression OrthogonalPi[n,m] refers to πnOm.
• Given an element a ∈ [X, Y ], we have Source[a]=X and Target[a]=Y. If X = Sn we

have SourceSphere[a]=n. Similarly, if Y = Sm we have TargetSphere[a]=m. If X = Sn
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and Y = Sm we have Stem[a]=n-m and ST[a]={n,m}. We do not currently distinguish
internally between different zero maps, so Source[0] and so on are undefined.

• For general a ∈ [X, Y ], the function Home[a] represents the set [X, Y ]. The function
ShowHome[a] displays this in a nicely readable form.

• Given a ∈ [X, Y ] and b ∈ [Y, Z], the composite b ◦ a is represented by the expression
o[b,a].

2.4. Functions.

• The suspension functor is denoted by Sigma. We use the definition ΣX = X ∧S1. We are
primarily interested in Σ as a homomorphism πkSn −→ πk+1S

n+1.
• The iterated suspension ΣnX is represented by SigmaIterate[n,X].
• The Hopf invariant H : πkSn −→ πkS2n−1 is represented by Hopf. We use the James-Hopf

definition with the left lexicographic ordering.
• The connecting map P : πkS2n+1 −→ πk−2S

n in the EHP sequence is represented by
WhiteheadP. I am not sure if we have the sign pinned down.

• The unstable J-homomorphism πkOn −→ πk+nSn is represented by JHomomorphism.
• The evident map πkOn −→ πkOn+1 is represented by OrthogonalSigma.
• The evaluation map πkOn −→ πkSn−1 is represented by OrthogonalHopf (because it is

compatible with Hopf via the J-homomorphism). Note that there is an implicit identi-
fication of the round sphere in Rn with our Sn−1 = Rn−1 ∪ {∞}, so we need to fix the
sign.

• The connecting map πkSn−1 −→ πk−1On−1 in the orthogonal sequence is represented by
OrthogonalP. It comes from an map ΩSn−1 = JSn−2 −→ On−1 extending the reduced
reflection map Sn−2 −→ SOn−1, at least up to sign.

2.5. Homotopy elements.

• ιn : Sn → Sn is the identity map. Mathematica notation is iota[n].
• w[n] refers to the Whitehead product wn = [ιn, ιn] : S2n−1 −→ Sn.
• η2 : S3 → S2 is the complex Hopf map. For k ≥ 2 we put ηk = Σk−2η2. Mathematica

notation is eta[k].
• ν4 : S7 → S4 is defined by the properties H(ν4) = ι7 and 2Σ(ν4) = Σ2ν′ (Lemma 5.4).

I think this only defines it modulo 2ν′. However, I think we pin it down precisely by
requiring that ν4 should be equal to the quaternionic Hopf map plus an odd torsion class,
and that Σν4 should be 2-torsion. For n ≥ 4 we put νn = Σn−4ν4. Mathematica notation
is nu[n].

• σ8 : S15 → S8 is the octonionic Hopf map plus an odd torsion class, chosen so that Σσ8 is
2-torsion. Toda defines it (Lemma 5.14) by the property that H(σ8) = ι15. For n ≥ 8 we
put σn = Σn−8σ8. Mathematica notation is sigma[n].

• ε3 : S11 → S3 is the unique element of the Toda bracket 〈η3,Σν′, ν7〉1 (see the beginning of
Toda’s Chapter VI). For k ≥ 3 we put εk = Σk−3ε3. Mathematica notation is epsilon[k].

• In Toda’s Section VI(ii) he defines ν6 : S14 → S6 to be an element of the Toda bracket
〈ν6, η9, ν10〉1. We will let ν6denote the unique element of this Toda bracket that satisfies
H(ν6) = ν11. This definition is validated in Section 3. We put νn = Σn−6ν6 for n ≥ 6.
Mathematica notation is nubar[n].

• The map µ3 : S12 → S3 is defined in Toda’s Section VI(iii) by a procedure of several steps,
involving the cofibre of the map ν′ : S6/8 → S3. It turns out that the indeterminacy is
{0, η3 ◦ ε4} (see the discussion preceeding Lemma 6.5, together with Theorem 7.1). We
also have π12S

3 = Z2µ3 ⊕ Z2(η3 ◦ ε4). The element η3 ◦ ε4 has Adams filtration 4, and
we make the unique choice of µ3 that has Adams filtration 5. We write µk = Σk−3µ3 for
k ≥ 3. Mathematica notation is mu[k].

• We define ζ5 : S16 → S5 to be the unique element of the Toda bracket 〈ν5, 8ι8,Σσ′〉1 that
satisfies H(ζ5) = 8σ9 and P (ζ5) = ±η2 ◦µ′. This is validated in Section 3, based on Toda’s
Section VI(v). For k ≥ 5 we put ζk = Σk−5ζ5. Mathematica notation is zeta[k].
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• The element κ7 : S21 → S7 is defined in Toda’s Section X(i) as an element of a Toda
bracket involving the Moore space S9/2. The indeterminacy is not given explicitly. For
k ≥ 7 we put κk = Σk−7κ7. Mathematica notation is kappa[k].

• ε3 : S18 → S3 is the unique element of the Toda bracket 〈ε3, 2ι5, ν5 ◦ ν8〉6, and the unique
nonzero element of π3

18. See Toda’s Section X(i) and Theorem 10.5. For k ≥ 3 we put
εk = Σk−3ε3. Mathematica notation is epsilonbar[k].

• ρ13 : S28 → S13 is defined in Toda’s Lemma 10.9 by the properties 2ρ13 = Σ4ρ′ and
Σ∞ρ13 ∈ 〈σ, 2σ, 8ι〉. For k ≥ 13 we put ρk = Σk−13ρ13. Mathematica notation is rho[k].

• ζ5 : S24 → S5 is an element of the Toda bracket 〈ζ5, 8ι16, 2σ16〉1. See the preamble to
Toda’s Lemma 12.4. For k ≥ 5 we put ζk = Σk−5ζ5. Mathematica notation is zetabar[k].

• σ6 : S25 → S6 is an element of the Toda bracket 〈ν6, ε9 + ν9, σ16〉1. See the preamble
to Toda’s Lemma 12.5. For k ≥ 6 we put σk = Σk−6σ6. Mathematica notation is
sigmabar[k].

• ω14 : S30 → S14 is defined in Toda’s Lemma 12.15(i) by the requirement that H(ω14) =
ν27. The indeterminacy is {0, σ14 ◦µ21}. For k ≥ 14 we put ωk = Σk−14ω14. Mathematica
notation is omega[k].

• η∗16 : S32 → S16 is an element of the Toda bracket 〈σ16, 2σ23, η30〉1. See Toda’s Section
XII(iii). For k ≥ 16 we put η∗k = Σk−16η∗16. For k ≥ 18 we have η∗k = ωk modulo
σk ◦ µk+7, so either η∗k or ωk can be used as a generator of πk

k+16. Mathematica notation
is etastar[k].

• ε∗12 : S29 → S12 is defined in Toda’s Lemma 12.15(ii) by the properties H(ε∗12) = ν23 ◦ ν27

and Σ2ε∗12 = ω14 ◦ η30. This fixes ε∗12 as a function of ω14. However, the indeterminacy
of σ14 ◦ µ21 in ω14 creates an indeterminacy of σ12 ◦ η19 ◦ µ20 in ε∗12. For k ≥ 12 we put
ε∗k = Σk−12ε∗12. Mathematica notation is epsilonstar[k].

• µ3 : S20 → S3 is defined in the preamble to Toda’s Lemma 12.2 to be an element of the
Toda bracket 〈µ3, 2ι12, 8σ12〉1. I have not checked the indeterminacy. For k ≥ 3 we put
µk = Σk−3µ3. Mathematica notation is mubar[k].

• ν∗16 : S34 → S16 is defined in Toda’s Section XII(iii) to be an element of the Toda bracket
〈σ16, 2σ23, ν30〉1. I have not checked the indeterminacy. For k ≥ 16 we put ν∗k = Σk−16ν∗16.
Mathematica notation is nustar[k].

• ξ12 : S30 → S12 is defined in Toda’s Section XII(iii) to be an element of the Toda bracket
〈σ12, ν19, σ22〉1. I have not checked the indeterminacy. For k ≥ 12 we put ξk = Σk−12ξ16.
Mathematica notation is xi[k].

• ν′ is an element of the Toda bracket 〈ν3, 2ι4, η4〉1. I think it is also obtained by applying the
unstable J-homomorphism to the generator of π3SO(3). Toda’s definition is indeterminate
up to sign. See Toda’s Equations 5.3 and 5.4. Mathematica notation is nuprime.

• σ′′′ : S12 → S5 is the unique element of the Toda bracket 〈ν5, 8ι8, ν8〉, and is the unique
nonzero element in π12S

5. See Toda’s Lemma 5.13. Mathematica notation is sigmathird.
• σ′′ : S13 → S6 is characterised by the properties H(σ′′) = η2

11 and Σ3σ′′ = 4σ9. It has
order 4 and generates π13S

6. See Toda’s Lemma 5.14 (corrected by replacing σ′′ by σ′

on the second line), and note that Σ3 : π6
13 → π9

16 is injective. Mathematica notation is
sigmasecond.

• σ′ : S14 → S7 is characterised by the properties H(σ′) = η13 and Σ2σ′ = 2σ9. It has order
8 and generates π14S

7. See Toda’s Lemma 5.14 (corrected by replacing σ′′ by sigma′

on the second line), and note that Σ2 : π7
14 → π9

16 is injective. Mathematica notation is
sigmaprime.

• ε′ : S13 → S3 is the unique element of the Toda bracket 〈ν′, 2ν6, ν9〉3. See Toda, Section
VI(iv). Mathematica notation is epsilonprime.

• The element µ′ : S14 → S3 lies in the Toda bracket 〈η3, 2ι4, µ4〉1 and satisfies H(µ′) = µ5

and 2µ′ = η3 ◦ η4 ◦ µ5; this is explained at the beginning of Toda’s Section VII(ii). Toda
does not state the indeterminacy and I have not worked it out. Mathematica notation is
muprime.
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• θ′ : S23 → S11 is the unique element of the Toda bracket 〈σ11, 2ν18, η21〉1 and the unique
nonzero element of π11

23 . See Toda’s Lemma 7.5. Mathematica notation is thetaprime.
• θ : S24 → S12 lies in the Toda bracket 〈σ12, ν19, η22〉1. It is not clear whether the indeter-

minacy is zero. Mathematica notation is theta.
• ρ(4) : S20 → S5 is defined in Toda’s Section X(iii) to be an element of the Toda bracket
〈σ(3), 2ι12, 8σ12〉1. It is proved in Section 3 that the indeterminacy is zero. Mathematica
notation is rhofourth.

• ρ(3) : S21 → S6 is defined in Toda’s Section X(iii) to be an element of the Toda bracket
〈σ′′, 4ι13, 4σ13〉1. Mathematica notation is rhothird.

• ρ′′ : S22 → S7 is defined in Toda’s Section X(iii) to be an element of the Toda bracket
〈σ′, 8ι14, 2σ14〉1. We will take it to be the unique element for which H(ρ′′) = µ13. This is
validated in Proposition 30. Mathematica notation is rhosecond.

• ρ′ : S24 → S9 is defined in Toda’s Section X(iii) to be an element of the Toda bracket
〈σ9, 16ι16, σ16〉1. Mathematica notation is rhoprime.

• ζ ′ : S22 → S6 is the unique element such that H(ζ ′) = ζ11mod2ζ11 and Σζ ′ = σ′ ◦η14 ◦ ε15.
This is validated in Proposition 32, which refines Toda’s Lemma 12.1. Mathematica
notation is zetaprime.

• ε′ : S20 → S3 is defined in Toda’s Lemma 12.3 by the properties 2ε′ = η3 ◦ η4 ◦ ε5 and
Σε′ = (Σν′)◦κ7. The map Σ here is injective by Toda’s Theorem 12.7, so this characterises
ε′ uniquely. Mathematica notation is epsilonbarprime.

• µ′ : S22 → S3 is an element of the Toda bracket 〈µ′, 4ι14, 4σ14〉1. See the preamble to
Toda’s Lemma 12.4. Mathematica notation is mubarprime.

• η∗′ : S31 → S15 is an element of the Toda bracket 〈σ15, 4σ22, η29〉1. (There seems to be
a filtration shift so this is not seen in Ext.) See Toda’s Section XII(iii). Mathematica
notation is etastarprime.

• λ′′ : S28 → S10 is defined in Toda’s Lemma 12.19 by the properties Σλ′′ = 2λ′ and
H(λ′′) = η19 ◦ε20mod(η19 ◦ε20 +ν3

19). I have not checked the indeterminacy. Mathematica
notation is lambdasecond.

• ξ′′ : S28 → S10 is defined in Toda’s Lemma 12.19 by the properties Σξ′′ = 2ξ′ and
H(ξ′′) = ν19 ◦ ν22 ◦ ν25 + η13 ◦ ε20. I have not checked the indeterminacy. Mathematica
notation is xisecond.

• λ′ : S29 → S11 is defined in Toda’s Lemma 12.19 by the properties Σ2λ′ = 2λ and
H(λ′) = ε21mod(ν21 + ε21). I have not checked the indeterminacy. Mathematica notation
is lambdaprime.

• ξ′ : S29 → S11 is defined in Toda’s Lemma 12.19 by the properties Σξ′ = 2ξ12 ±w12 ◦ σ23

and H(ξ′) = ν21 + ε21. I have not checked the indeterminacy. Mathematica notation is
xiprime.

• λ : S31 → S13 is defined in Toda’s Lemma 12.18 by the properties Σ3λ = 2ν∗16 ±w16 ◦ ν31

and H(λ) = ν25 ◦ ν28. I have not checked the indeterminacy. Mathematica notation is
lambda.

• ω′ : S31 → S12 is defined in Toda’s Lemma 12.21 by the properties Σ2ω′ = 2ω14 ◦ ν30 and
H(ω′) = ε23mod(ν23 + ε23). I have not checked the indeterminacy. Mathematica notation
is omegaprime.

The additive order of one of these elements a is AdditiveOrder[a].

2.6. Genealogy. Recursive application of the EHP spectral sequence gives a filtration of the two-
torsion in πn+kSn by subgroups Fn

I , where I runs over sequrences (i1, . . . , ir) with i1 < n and
it+1 ≤ 2it and

∑
t it = k. We have Fn

I ≤ Fn
J if I ≤ J in lexicographic order, so we have a linear

filtration with quotients Qn
I say, and one can check that Qn

I is always either zero or Z2. For each
(n, I) such that Qn

I 6= 0 we choose an element xn
I ∈ Fn

I mapping to the generator. The sequence I
is called the genealogy of xn

I (the first element is one less than the sphere on which xn
I is “born”,

and the rest of the sequence is the genealogy of the Hopf invariant of a maximal desuspension).
The program specifies choices for the elements xn

I up to the 13-stem. The Mathematica notation



6 N. P. STRICKLAND

for x6
4,3,2 (for example) is x[6,{4,3,2}]. The functions TodaName and GenealogyName can be

used to convert between Toda’s names and the genealogy names for elements in π∗S
∗.

2.7. The Λ-algebra. There is a separate program called LambdaAlgebra.m that knows a little
about the lambda algebra and the Adams spectral sequence. It can calculate the cohomology of
the lambda algebra, but it uses a very direct and naive method; I have not yet set up the Curtis
algorithm, which would be much more efficient.

• An expression λi1 · · ·λir
in the Λ-algebra is represented by lambda[i1, . . . , ir]. The same el-

ement, thought of as an element of the subspace Λ(m), is represented by ulambda[m, i1, . . . , ir].
• The product of elements a and b in the Λ-algebra is represented by o[a,b]. The differential

on a is represented by del[a].
• The bidegree of an element a is Bidegree[a]; for example, Bidegree[lambda[i,j]]={2,i+j+2}.

If Bidegree[a]={s,t} then AdamsFiltration[a]=s and Stem[a]=t-s.
• For a ∈ Λ(n)s,t we have TargetSphere[a]=n and SourceSphere[a]=n+t-s.
• The functions Sigma, Hopf and WhiteheadP are defined for elements of Λ(n)∗∗ as in the

algebraic EHP sequence.
• The function Basis[Lambda[s,t]] returns the admissible basis for Λs,t. Similarly, Basis[Lambda[n,s,t]]

returns a basis for Λ(n)s,t.
• Given an element a ∈ πkSn, the function LambdaRepresentative[a] is supposed to return

a cocycle in Λ(n)∗∗ that represents a in the unstable Adams spectral sequence. The
program only knows representatives for a limited number of elements, however.

2.8. Display functions.
• ShowHome[a] gives nicely readable information about the group in which a lives.
• ShowMap[F,n,m] (where F is one of Sigma, Hopf or WhiteheadP) gives nicely readable

information about the map F out of πnSm, including the structure of the source and tar-
get groups and the effect on the generators. One can also use ShowMap[F,To[n,m]]
to display information about F into the group πnSm. Moreover, if a ∈ πnSm then
ShowMap[F,a] (or ShowMap[F,From[a]]) is equivalent to ShowMap[F,n,m], and similarly
for ShowMap[F,To[a]].

• Zap[a] rewrites a in terms of standard generators of the group in which it lives, using all
known relations. Typing Explain[a] gives an explanation of the steps used.

• ?a displays the definition of a.

3. Results

Proposition 1. There is a unique element ν6 ∈ 〈ν6, η9, ν10〉 ⊂ π6
14 such that H(ν6) = ν11.

Proof. Following [3, Section VI(ii)], we temporarily let ν6 denote an arbitrary element of the
indicated Toda bracket. Toda explains that the indeterminacy is generated by P (ν13), and then
he shows in his Lemma 6.2 that P (ν13) = ±2ν6. Thus, the elements of the relevant Toda bracket
are the odd multiples of ν6. We also learn from Toda’s Lemma 6.2 that H(ν6) = kν11 for some
odd k. From his Proposition 5.6 and Theorem 7.1 we know that both ν11 and ν6 have order 8, so
H : Z8ν6 −→ Z8ν11 is an isomorphism. If we let j be inverse to k modulo 8, we conclude that jν6

is the unique element of 〈ν6, η9, ν10〉 that is sent by H to ν11. �

Proposition 2. η3 ◦ Σε′ = 0

Proof. Recall that ε′ is the unique element of the Toda bracket 〈ν′, 2ν6, ν9〉3 ⊆ π3
13 (see [3, Section

VI(iv)]). Using [3, Propositions 1.2(iv) and 1.3], and the fact that −η3 = η3, we deduce that
η3◦Σε′ ∈ 〈η3◦Σν′, ν7, ν10〉4. Next, we know from [3, Lemma 5.7] that η2◦ν′ = ±P (ν5). Suspending
this gives η3◦Σν′ = 0. This means that the above Toda bracket is equal to its indeterminacy, which
is ν∗11π

3
11. We know from [3, Theorem 7.1] that π3

11 = Z2ε3, so the indeterminacy is generated
by ε3 ◦ ν11, which is one of the generators for π3

14 listed in [3, Theorem 7.4], giving a summand
of order 2. Thus η3 ◦ Σε′ ∈ {0, ε3 ◦ ν11}. However, [3, Equations 7.8] say that H(ε3 ◦ ν11) 6= 0,
whereas H(η3 ◦ Σε′) = HΣ(η2 ◦ ε′) = 0 (because HΣ = 0). We must therefore have η3 ◦ Σε′ = 0
as claimed. �
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Corollary 3. P (ν5 ◦ σ8) = ±η2 ◦ ε′.

Proof. We have an exact sequence

π3
15

H−→ π5
15

P−→ π2
13

Σ−→ π3
14.

We know from [3, Theorems 7.6, 7.3 and 7.4] that

π3
15 = Z2(ν′ ◦ µ6)⊕ Z2(ν′ ◦ η6 ◦ ε7)

π5
15 = Z2(η5 ◦ µ6)⊕ Z8(ν5 ◦ σ8)

π2
13 = Z4(η2 ◦ ε′)⊕ Z2(η2 ◦ η3 ◦ µ4)

π3
14 = Z4µ

′ ⊕ Z2(ε3 ◦ ν11)⊕ Z2(ν′ ◦ ε6).

For the maps, we have

H(ν′ ◦ µ6) = η5 ◦ µ6

H(ν′ ◦ η6 ◦ ε7) = 4(ν5 ◦ σ8)

Σ(η2 ◦ ε′) = 0

Σ(η2 ◦ η3 ◦ µ4) = 2µ′

(The first two equations are from [3, Bottom of page 75], the third is Proposition 2 above, and
the fourth is [3, Equations 7.7].) It follows that

cok(H) = Z4(ν5 ◦ σ8)

ker(Σ) = Z4(η2 ◦ ε′).

The EHP sequence tells us that P must induce an isomorphism between these groups, so P (ν5 ◦
σ8) = ±η2 ◦ ε′ as claimed. �

Proposition 4. P (σ′) = 0

Proof. We have σ′ ∈ π7
14, and there is an exact sequence

π7
14

P−→ π3
12

Σ−→ π4
13.

It will therefore suffice to show that the map Σ is injective. This can be read off from [3, Theorem
7.2]. �

Proposition 5. H(η2 ◦ ε3) = ε3.

Proof. We have an exact sequence

0 = π1
10

E−→ π2
11

H−→ π3
11

P−→ π1
9 = 0,

so the map H is an isomorphism. By [3, Theorems 7.2 and 7.1] we have π2
11 = Z2(η2 ◦ ε3) and

π3
11 = Z2ε3. The claim follows. �

Proposition 6. P (ν7) = 0

Proof. It will of course be enough to show that the whole map P : π7
15 −→ π3

13 is zero, or equivalently,
that the map Σ: π3

13 −→ π4
14 is injective. This can be read off directly from [3, Theorem 7.3]. �

Proposition 7. P (σ9) = k(ν4 ◦ σ′ ± Σε′) for some odd k.

Proof. As π9
16 = Z16σ9, it will suffice to show that ν4◦σ′±Σε′ generates the kernel of Σ: π4

14 −→ π5
15.

The groups are given in [3, Theorem 7.3] as

π4
14 = Z8(ν4 ◦ σ′)⊕ Z4Σε′ ⊕ Z2(η4 ◦ µ5)

π5
15 = Z8(ν5 ◦ σ8)⊕ Z2(η5 ◦ µ6).

From the definitions we have Σ(η4 ◦µ5) = η5 ◦µ6. We also know from [3, Equations 7.10 and 7.16]
that Σ2ε′ = ±2ν5 ◦ σ8 = Σ(ν4 ◦ σ′). The claim follows. �

Proposition 8. (2η2) ◦ ε3 = 0 and (2η2) ◦ µ3 = 0.
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Proof. We have H(ε′) = ε5 by [3, Lemma 6.6], so P (ε5) = 0. On the other hand, P (ε5) =
P (Σ2ε3) = w2 ◦ ε3, and w2 = ±2η3 by [3, Proposition 5.1]. The first claim follows, and the second
claim follows in the same way from the fact that H(µ′) = µ5. �

Proposition 9. P (η9) = (Σν′) ◦ η7.

Proof. As η9 = Σ2η7 we have P (η9) = w4 ◦ η7. We know from [3, Equations 5.8] that w4 =
±(2ν4 − Σν′). As η7 is a suspension it follows that

w4 ◦ η7 = ν4 ◦ (±2η7) + (Σν′) ◦ (∓η7).

As η7 has order 2 this just reduces to (Σν′) ◦ η7. �

Proposition 10. w6 ◦ ν11 = P (ν13) = 2ν6.

Proof. The first equation holds because ν13 = Σ2ν11. For the second, note that π3
16 = Z8ν13, so

P (ν8) must generate the kernel of Σ: π6
14 −→ π7

15. We read off from [3, Theorem 7.1] the fact that
this kernel is Z4.(2ν6), so P (ν13) = ±2ν6. To remove the indeterminacy, recall that H(ν6) = ν11,
which has order 8, so it will suffice to show that H(P (ν13)) = 2ν11. For this we use [1, Corollary
6.6]. This says that for α : ΣX −→ S2k+1 (with k odd) we have

γ2n([jk, jk] ◦ α) = (2nj) ◦ (γn(α)).

We take k = 5 and X = S13 and α = ν11. We observe that jm is Baues’s notation for ιm+1 and
that [ι6, ι6] = w6, so the left hand side is γ2n(w6 ◦ν11). We then take n = 2 and recall that γ2 = H
and γ1 is the identity. The symbol j on the right hand side refers to the identity of the relevant
sphere, which is S11. The right hand side is thus (2ι11) ◦ ν11, which is the same as 2ν11 because
ν11 is a suspension. �

Proposition 11. w10 ◦ η19 = P (η21) = 2(σ10 ◦ ν17)

Proof. The first equation holds because η21 = Σ2η19. For the second, note that π21
22 = Z2η21, so

P (η21) must generate the kernel of Σ: π10
20 −→ π11

21 . We read off from [3, Theorem 7.3] the fact that
this kernel is Z2.(2σ10 ◦ ν17), and the claim follows. �

Lemma 12. For α ∈ πm
n and β ∈ πi

m (with n > 1 and m, i > 0) we have

H(β ◦ α) = H(β) ◦ α + (Σi−1β) ◦ (Σm−1β) ◦H(α)

Proof. This is a special case of [1, Corollary III.6.3]. (Note that his γ2 is our H, and his β#β is
our (Σi−1β) ◦ (Σm−1β), whereas Toda’s β#β is β ∧ β = (Σiβ) ◦ (Σmβ). There are some signs
to check here.) �

Proposition 13. (Σν′) ◦ σ′ = 2Σε′

Proof. Put
x = (Σν′ ◦ σ′) ∈ π4

14 = Z2(η4 ◦ µ5)⊕ Z4(Σε′)⊕ Z8(ν4 ◦ σ′).
We can write x = a(η4 ◦ µ5) + bΣε′ + c(ν4 ◦ σ′) for some a, b, c. We now suspend this relation,
using the facts that

π5
15 = Z2(η5 ◦ µ6)⊕ Z8(ν5 ◦ σ8)

Σ2ν′ = 2ν5

ν5 ◦ Σσ′ = 2(ν5 ◦ σ8)

Σ((Σν′) ◦ σ′) = (2ν5) ◦ Σσ′ = 4(ν5 ◦ σ8)

Σ(η4 ◦ µ5) = η5 ◦ µ6

Σ(Σε′) = 2(ν5 ◦ σ8)

Σ(ν4 ◦ σ′) = 2(ν5 ◦ σ8)

This gives
4(ν5 ◦ σ8) = a(η5 ◦ µ6) + 2(b + c)(ν5 ◦ σ8),
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so a = 0 and 2b + 2c = 4 (mod 8), so b = 2− c (mod 4). As b is really only defined mod 4 we can
take b = 2− c, so

x = c(ν4 ◦ σ′) + (2− c)Σε′).
We now take Hopf invariants, using the fact that

π7
14 = Z8σ

′

H(Σε′) = 0

H(ν4 ◦ σ′) = σ′

H((Σν′) ◦ σ′) = 0.

We deduce that c = 0 and so x = 2Σε′. �

Corollary 14. ν′ ◦ σ′′ = 0

Proof. We have Σσ′′ = 2σ′ by [3, Lemma 5.14]. Suspending the result of Proposition 13 therefore
gives Σ(ν′ ◦σ′′) = 2((Σν′)◦σ′) = 4Σε′, but 4ε′ = 0 by [3, Theorem 7.3] so Σ(ν′ ◦σ′′) = 0. However,
we have ν′ ◦ σ′′ ∈ π3

13 and we can also read off from [3, Theorem 7.3] the fact that Σ: π3
13 −→ π4

14

is injective. It follows that ν′ ◦ σ′′ = 0. �

Proposition 15. µ3 ◦ η12 = η3 ◦ µ4

Proof. We first show that µ5 ◦ η14 = η5 ◦ µ6. Indeed, this is essentially the commutativity of the
diagram

S12 ∧ S3

µ3∧1

��

1∧η2 // S12 ∧ S2

µ3∧1

��
S3 ∧ S3

1∧η2

// S3 ∧ S2.

There are some coordinate permutations to take care of, so we really get a relation of the form

(±ι) ◦ µ5 ◦ (±ι) ◦ η14 ◦ (±ι) = (±ι) ◦ η5 ◦ (±ι) ◦ µ6 ◦ (±ι).

As µ5, η14, η5 and µ6 are all suspensions, the signs can be moved around freely. As −η5 = η5 and
−η14 = η14 we conclude that µ5 ◦ η14 = η5 ◦ µ6 as claimed. Now consider the double suspension
homomorphism

Σ2 : π3
13 −→ π5

15.

We know from [3, Theorem 7.3] that

π3
13 = Z2(η3 ◦ µ4)⊕ Z4ε

′

π5
15 = Z2(η5 ◦ µ6)⊕ Z8(ν5 ◦ σ8),

and from [3, Equations 7.10] that Σ2ε′ = ±(ν5 ◦ σ8). It follows that Σ2 is injective. We have seen
that

Σ2((µ3 ◦ η12)− (η3 ◦ µ4)) = (µ5 ◦ η14)− (η5 ◦ µ6) = 0,

so µ3 ◦ η12 = η3 ◦ µ4 as claimed. �

Proposition 16. ε′ ◦ ν13 = 0.

Proof. We have ε′ ◦ ν13 ∈ π3
16 = Z2(ν′ ◦ η6 ◦ µ7). We also have

H(ν′ ◦ η6 ◦ µ7) = H(ν′) ◦ η6 ◦ µ7 = η5 ◦ η6 ◦ µ7 = 4ζ5,

by Toda’s Equations 5.3 and the proof of Equations 7.13. Toda’s structure theorem for π5
16 shows

that 4ζ5 6= 0, so H : π3
16

(−→)π5
16 is injective. It will thus suffice to show that H(ε′ ◦ ν13) = 0. As

H(ε′) = ε5 (by Toda’s lemma 6.6) and ν13 is a double suspension, we have H(ε′ ◦ ν13) = ε5 ◦ ν13,
and this is zero by Equations 7.13, as required. �

Proposition 17. H(ε3) = ν5 ◦ σ8 ◦ ν15.
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Proof. We know from [3, Lemma 10.2] that

H(ε3) = ν5 ◦ σ8 ◦ ν15 (mod ν5 ◦ η8 ◦ µ9),

and from [3, Theorem 7.7] that

π5
18 = Z2(ν5 ◦ σ8 ◦ ν15)⊕ Z2(ν5 ◦ η8 ◦ µ9),

so
H(ε3) ∈ {ν5 ◦ σ8 ◦ ν15, ν5 ◦ σ8 ◦ ν15 + ν5 ◦ η8 ◦ µ9}.

We also have PH = 0 and

P (ν5 ◦ σ8 ◦ ν15) = P (ν5 ◦ σ8) ◦ ν13

= η2 ◦ ε′ ◦ ν13(Corollary 3)

= 0(Proposition 16)

P (ν5 ◦ η8 ◦ µ9) = P (ν5) ◦ η6 ◦ µ7

= η2 ◦ ν′ ◦ η6 ◦ µ7[3, Lemma 5.7]

6= 0[3, Theorem 10.3]

We must therefore have H(ε3) = ν5 ◦ σ8 ◦ ν15 as claimed. �

Proposition 18. There is a unique element ζ5 ∈ 〈ν5, 8ι8,Σσ′〉1 such that H(ζ5) = 8σ9 and
P (ζ5) = ±η2 ◦ µ′.

Proof. Put B = 〈ν5, 8ι8,Σσ′〉1 and choose ξ ∈ B (so ξ is a “choice of ζ5”). Toda shows in [3,
Section VI(v)] that B is a well-defined coset of ν5 ◦ Σπ7

15 in π5
16. We read off from [3, Theorem

7.1] that the indeterminacy is generated by ν5 ◦Σσ′ ◦ η15, ν5 ◦ ν8 and ν5 ◦ ε8. We also see from [3,
Equations 7.16] that ν5 ◦Σσ′ = 2ν5 ◦σ8 which implies ν5 ◦Σσ′ ◦η15 = 0. We also have H(ξ) = 8σ9

and 4ξ = η5 ◦ η6 ◦ µ7 by [3, Lemma 6.7]. (The second equation is stated modulo ν5 ◦ 2Σπ7
15, but

we see from [3, Theorem 7.1] that 2Σπ7
15 = 0.)

We now consider the exact sequence

π3
16

H−→ π5
16

P−→ π2
14.

The groups involved are calculated in Theorems 7.7, 7.4 and 7.6 of [3], giving the following exact
sequence:

Z2(ν′η6µ7)
H−→ Z2(ν5ν8)⊕ Z2(ν5ε8)⊕ Z8(ξ)

P−→ Z2(η2ε3ν11)⊕ Z2(η2ν
′ε6)⊕ Z4(η2µ

′).

We know from [3, Equations 5.3] that H(ν′) = η5, and η6 ◦ µ7 is a suspension, so

H(ν′ ◦ η6 ◦ µ7) = H(ν′) ◦ η6 ◦ µ7 = η5 ◦ η6 ◦ µ7 = 4ξ.

Because the sequence is exact, the image of P must have order 16, so P must be surjective. We
can thus choose an element ξ′ = xξ + y(ν5 ◦ ν8) + z(ν5 ◦ ε8) such that P (ξ′) = η2 ◦ µ′. As this has
order 4, we see that x must be odd, so we can put ζ5 = ξ′/x and note that this lies in the coset
B. As x = ±1 (mod 4) we have P (ζ5) = ±η2 ◦ µ′. One can work back through the argument to
see that ζ5 is unique. �

Corollary 19. ν5 ◦ σ8 ◦ η15 = ν5 ◦ ε8 (mod 4ζ5).

Proof. We saw in the previous proof that 4ζ5 generates the kernel of P : π5
16 −→ π2

14, so it will
suffice to show that P (ν5 ◦ σ8 ◦ η15) = P (ν5 ◦ ε8). Corollary 3 gives P (ν5 ◦ σ8) = ±η2 ◦ ε′, so the
rule P (α ◦ Σ2β) = P (α) ◦ β gives P (ν5 ◦ σ8 ◦ η15) = (±η2 ◦ ε′) ◦ η13. As η13 is still a suspension
and has order 2, the sign can be ignored giving η2 ◦ ε′ ◦ η13. Using [3, Equations 7.12] we can
convert this to η2 ◦ ν′ ◦ ε6. On the other hand, we have P (ν5) = ±η2 ◦ ν′ by [3, Lemma 5.7], so
P (ν5 ◦ ε8) = (±η2 ◦ ν′) ◦ ε6 = η2 ◦ ν′ ◦ ε6 as required. �

Proposition 20. ν6 ◦ ν9 ◦ ν12 ◦ ν15 = 0.
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Proof. We will show that P (ν11) = ν5 ◦ ν8 ◦ ν11 ◦ ν14; the claim will follow by suspending this.
First, we have

P (ν11) = P (ι11 ◦ Σ2ν9) = w5 ◦ ν9.

We know from [3, Equations 5.10] that w5 = ν5 ◦ η8, and from [3, Lemma 6.3] that η8 ◦ ν9 =
ν8 ◦ ν11 ◦ ν14. Putting this together gives the result. �

Proposition 21. ν5 ◦ ν8 ◦ σ11 = 0.

Proof. ν5 ◦ ν8 ◦ σ11 is in the common kernel of the maps H : π5
18 −→ π9

18 and P : π5
18 −→ π2

16, which
is trivial. Fill in the details �

Proposition 22. ν6 ◦ ν9 = 2ν6 ◦ ν14

Proof. We know from [3, Equations 7.17] that P (σ11) = ν5 ◦ ε8 + ν5 ◦ ν8. Suspending this relation
and using [3, Eqations 7.18] gives ν6 ◦ ν9 = −ν6 ◦ ε9 = −2ν6 ◦ ν14. We can drop the minus sign
because 4ν6 ◦ ν14 = 0 (by [3, Theorem 7.4]). �

Proposition 23. ν10 ◦ ν18 = 0

Proof. We will show that ν9 ◦ ν17 = P (ν19); the claim follows by suspending this.
Using the rule P (α ◦ Σ2β) = P (α) ◦ β and [3, Equations 7.1] we have

P (ν19) = P (ι19) ◦ ν17 = σ9 ◦ η16 ◦ ν17 + ν9 ◦ ν17 + ε9 ◦ ν17.

Next, we see from [3, Equations 5.9] that η16 ◦ ν17 = 0. Moreover, [3, Equations 7.13] gives
ε4 ◦ ν12 = P (ε9), and suspending this five times gives ε9 ◦ ν17 = 0. Putting these relations into the
displayed equation gives P (ν19) = ν9 ◦ ν17 as required. �

Proposition 24. σ′′′ ◦ ε12 = 0.

Proof. We have Σσ′′′ = 2σ′′ by [3, Lemma 5.14], and 2ε13 = 0 by [3, Theorem 7.1], so Σ(σ′′′◦ε12) =
0. Moreover, we know from [3, Equations 10.14] that Σ: π5

20 −→ π6
21 is injective, so σ′′′ ◦ ε12 = 0 as

claimed. �

Proposition 25. σ′′′ ◦ ν12 = 0.

Proof. We have Σσ′′′ = 2σ′′ by [3, Lemma 5.14], and 2ν13 = 0 by [3, Theorem 7.1], so Σ(σ′′′◦ν12) =
0. Moreover, we know from [3, Equations 10.14] that Σ: π5

20 −→ π6
21 is injective, so σ′′′ ◦ ν12 = 0 as

claimed. �

Corollary 26. There is no indeterminacy in the definition ρ(4) = 〈σ′′′, 2ι12, 8σ12〉1.

Proof. The general rule in [3, Lemma 1.1] says that the indeterminacy is σ′′′ ◦Σπ11
19 +π5

13 ◦ (8σ13).
We see from [3, Theorem 7.1] and Propositions 24 and 25 that σ′′′ ◦Σπ11

19 = 0. Moreover, ρ(4) lies
in π5

20, which has exponent 2 by [3, Theorem 10.5], so π5
13 ◦ (8σ13) = 0. �

Proposition 27. σ′′ ◦ ε13 = 0.

Proof. We have Σσ′′ = 2σ′ by [3, Lemma 5.14], and 2ε14 = 0 by [3, Theorem 7.1], so Σ(σ′′◦ε13) = 0.
Moreover, we know from [3, Equations 10.14] that Σ: π6

21 −→ π7
22 is injective, so σ′′ ◦ ε13 = 0 as

claimed. �

Proposition 28. σ′′ ◦ ν13 = 0.

Proof. We have Σσ′′ = 2σ′ by [3, Lemma 5.14], and 2ν14 = 0 by [3, Theorem 7.1], so Σ(σ′′ ◦ν13) =
0. Moreover, we know from [3, Equations 10.14] that Σ: π6

21 −→ π7
22 is injective, so σ′′ ◦ ν13 = 0 as

claimed. �

Corollary 29. There is no indeterminacy in the definition ρ′′′ = 〈σ′′, 4ι13, 4σ13〉1.

Proof. The general rule in [3, Lemma 1.1] says that the indeterminacy is σ′′ ◦Σπ12
20 + π6

14 ◦ (4σ14).
We see from [3, Theorem 7.1] and Propositions 24 and 25 that σ′′ ◦ Σπ12

20 = 0. Moreover, ρ′′′ lies
in π6

21, which has exponent 4 by [3, Theorem 10.5], so π6
14 ◦ (4σ14) = 0. �
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Proposition 30. There is a unique element ρ′′ ∈ 〈σ′, 8ι14, 2σ14〉1 that satisfies H(ρ′′) = µ13.

Proof. Put B = 〈σ′, 8ι14, 2σ14〉1 and let ξ be any element of B. We know from [3, Equations 10.12]
that

H(ξ) = µ13 + xν13 ◦ ν16 ◦ ν19 + yη13 ◦ ε14

for some integers x and y. Next, we know from [3, Lemma 5.14] that H(σ′) = η13, so H(σ′ ◦ε14) =
η13 ◦ ε14 and H(σ′ ◦ ν14) = η13 ◦ ν14, which is the same as ν13 ◦ ν16 ◦ ν19 by [3, Lemma 6.3]. It
follows that the element ρ′′ = ξ − xσ′ ◦ ν14 − yσ′ ◦ ε14 has H(ρ′′) = µ13. The indeterminacy
of B is σ′ ◦ Σπ13

21 + π7
15 ◦ (2σ15). We see from [3, Theorem 7.1] that π7

15 has exponent 2 and
Σπ13

21 = Z2ε14⊕Z2ν14; it follows that the indeterminacy in B is generated by σ′ ◦ ν14 and σ′ ◦ ε14.
This shows that ρ′′ ∈ B, and that ρ′′ is the unique element in B with H(ρ′′) = µ13. �

Proposition 31. H(ε′) = ε5 (mod ρ(4)).

Proof. Using [3, Theorem 12.7 and Lemma 12.3] we see that the map Σ: π2
19 −→ π3

20 is as follows:

Z2(η2µ3σ12)⊕ Z2(η2η3ε4) −→ Z2(η3µ4σ13)⊕ Z4(ε′)⊕ Z2(µ3)
η2µ3σ12 7→ η3µ4σ13

η2η3ε4 7→ 2ε′.

As the EHP sequence is exact, we see that H induces a monomorphism from Z2(ε′) ⊕ Z2(µ3) to
the group π5

20 = Z2(ε5) ⊕ Z2(ρ(4)). We also learn from [3, Lemma 12.2] that H(µ3) = ρ(4). The
proposition follows. �

Proposition 32. There is a unique element ζ ′ ∈ π6
22 such that H(ζ ′) = ζ11 and Σζ ′ = σ′ ◦ η14.

Proof. We know from [3, Lemma 12.1] that there is an element in π6
22, which we temporarily

call ξ, such that H(ξ) = ζ11 (mod 2ζ11) and Σξ = σ′ ◦ η14 ◦ ε15 (mod 2π7
23). We see from [3,

Theorem 12.6] that 2π7
23 = 0 and thus that Σ(nξ) = σ′ ◦ η14 ◦ ε15 for any odd n. As H(ξ) = ζ11

(mod 2ζ11), we can choose n so that H(nξ) = ζ11, and we then put ζ ′ = nξ. Uniqueness is left to
the reader. �

Proposition 33. H(κ7) = ε13.

Proof. We first note from [3, Theorem 7.1] that π13
21 = Z2ε13 ⊕ Z2ν13, and the P homomorphism

kills both generators by [3, Equations 7.27], so H : π7
21 −→ π13

21 must be surjective. We have
π7

21 = Z8σ
′ ◦ σ14 ⊕ Z4κ7 by [3, Theorem 10.3], and H(σ′ ◦ σ14) = H(σ′) ◦ σ14 = ε13 + ν13

by [3, Lemmas 5.14 and 6.4]. It follows that H(κ7) must be ε13 or ν13. I think that Λ-algebra
representatives are as follows:

ν13 ∼ λ53

ε13 ∼ λ233

κ7 ∼ λ6233 + λ4721 + λ3623 + λ3443

H(κ7) ∼ λ233.

In particular, H(κ7) has Adams filtration 3 so it cannot equal ν13, and must therefore equal ε13
instead. �

Proposition 34. (Σσ′) ◦ ν15 ◦ ν18 = ν8 ◦ σ11 ◦ ν18.

Proof. The claimed equation takes place in the group

π8
21 = Z2(ν8 ◦ σ11 ◦ ν18)⊕ Z2(σ8 ◦ ν15 ◦ ν18).

This has exponent two so we need not worry about signs.
We will show that both sides are equal to P (ν17 ◦ ν20). For the right hand side, this is proved

by Toda, just above Equations 7.28. For the left hand side, we have P (ν17 ◦ ν20) = w8 ◦ ν15 ◦ ν18,
and w8 = ±(2σ8−Σσ′) by [3, Equations 5.16]. As ν15 ◦ ν18 is a suspension we can distribute, and
as π8

21 has exponent 2 we are just left with (Σσ′) ◦ ν15 ◦ ν18 as claimed. �

Proposition 35. σ′ ◦ ν14 = ν7 ◦ σ10 (mod 2ν7 ◦ σ10)
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Proof. This takes place in π17S
7 = Z2(η7 ◦µ8)⊕Z8(ν7 ◦ σ10), which maps to πS

10 = Z2(η ◦µ). We
know that νσ = 0 stably, so σν = 0 stably, but Σ2σ′ = 2σ9 so σ′ν also vanishes in the stable group.
It follows that σ′ ◦ ν14 = mν7 ◦ σ10 for some integer m. The part of the relevant unstable Adams
E2 term that contributes to π17S

7 has rank 4, with a single Z2 in each of filtrations 3, 4, 5 and 6,
the first generator corresponding to λ433 in the lambda algebra. One checks that σ′ is represented
by λ43 + λ61 and ν14 is represented by λ3 so σ′ ◦ ν14 is represented by (λ43 + λ61)λ3 = λ433. This
means that σ′ ◦ ν14 has minimal Adams filtration and so cannot be divided by 2. It follows that
m is odd. �

4. Questions

What are the following elements, in terms of Toda’s generators for the groups in which they
live?

• σ′ν14 ∈ π17S
7

• ν9σ12 ∈ π19S
9

• ν7ν15ν18 ∈ π21S
7

• σ10ε17 ∈ π25S
10

• σ′′′σ12 ∈ π19S
5

• H(ε′) ∈ π20S
5

• η13η14µ15 ∈ π24S
13

• P (σ9) ∈ π14S
4

• η9ε10 ∈ π25S
9

• ν5σ8η15 ∈ π16S
9

(This is only a sample of the open questions in Toda’s range.)
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