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Slopes

y=f(x)

Consider variables x and y related by y = f(z).
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dy/dx is the slope of the tangent line to the graph.
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If x changes by a small amount Jx, then y will change by a small amount 9y.

.~ p.2I?



Slopes

y+doy

oy slope dy/dx

ox

&L r+ox

If x changes by a small amount Jx, then y will change by a small amount 9y.

.~ p.2I?



Slopes

slope 6y /éx

y+doy

Sy slope dy/dx
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The ratio dy/dx is the slope of a chord cutting across the graph.
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Slopes

slope 6y /6

slope dy/d
L5y pe dy/dx
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The slope of the chord changes slightly as dx decreases.
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As 0x approaches zero, the chord approaches the tangent, and dy/dx

approaches dy/dzx.
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As 0x approaches zero, the chord approaches the tangent, and dy/dx
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Slopes

slope dy/dx

X
As dx approaches zero, the chord approaches the tangent, and §y/dx approaches

dy/dzx.
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Areas

y=f(x)

a b

Consider the integral f; fx)dx.
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Areas

y=f(x)

Area=f(z)h

a x x+h b

For each short interval [x,x + h| C [a, ], we have a contribution f(x)h. This

is the area of the green rectangle.
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Areas

y=f(x)

a b

This is the contribution from one short interval, but we need to add together

the contributions from many short intervals.

.~ p.3/?"



Areas

y=1(x)

a b

Here we have added in two more intervals
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Areas

a b

Now we have divided the whole interval [a, b] into subintervals of length h. The

sum of the terms f(x)h is the area of the green region.

.—p.3/?



Areas

a b

This is not exactly the same as the area under the curve, because of the regions

marked in blue and pink.
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Areas

a b

However, the error decreases if we make h smaller
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Areas

a b
However, the error decreases if we make h smaller, and tends to zero in the

limit.
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