
MAS61015 ALGEBRAIC TOPOLOGY — PROBLEM SHEET 12 — Solutions

Please hand in Exercises 1 and 2 by the Wednesday lecture of Week 6. I would prefer paper, but if that is not
possible for some reason, then you can send me a scan by email.

Exercise 1. We define groups Uk, Vk and Wk (for all k ∈ Z) and maps between them as follows:

• Uk is a copy of Z/4 with generator uk, and Vk is a copy of Z/16 with generator vk, and Wk is a copy of Z/4
with generator wk.

• The maps d : Uk → Uk−1 and d : Vk → Vk−1 and d : Wk → Wk−1 are given by d(uk) = 0 and d(wk) = 0 and
d(vk) = 8vk−1.

• The map i : Uk → Vk is given by i(uk) = 4vk.
• The map p : Vk → Wk is given by p(vk) = wk.

(a) Prove that this makes U∗, V∗ and W∗ into chain complexes.
(b) Prove that i and p are chain maps.

(c) Prove that the sequence U∗
i−→ V∗

p−→ W∗ is short exact.
(d) Find the homology groups of U∗, V∗ and W∗.
(e) Describe the action of the maps i∗ and p∗ on these homology groups.
(f) By finding suitable snakes, describe the connecting map δ : Hk(W ) → Hk−1(U). Check that the resulting long

sequence of homology groups is exact.

Note: In working through this problem you will need to refer to various homology classes [z]. You must remember
that this notation is only meaningful when z is a cycle, i.e. it satisfies d(z) = 0. It is easy to violate this rule by
accident; you should check your work carefully to ensure that you have not done so.

Solution:

(a) We just need to check the condition d2 = 0. For U and W we already have d = 0. For v we have d2(vk) =
d(8vk−1) = 64vk−2 but this is zero because vk−2 has order 16.

(b) We have di(uk) = d(4vk) = 32vk−1 which is again zero because vk−1 has order 16. On the other hand, we
have id(uk) = i(0) = 0, so di = id. Next, we have pd(vk) = p(8vk−1) = 8wk−1, which is zero as wk−1 has
order 4. On the other hand, we have d = 0 on W so dp(vk) = 0 as well. This shows that dp = pd, so both i
and p are chain maps.

(c) We have i(muk) = 4mvk, so i(muk) = 0 iff 4m is divisible by 16 iff m is divisible by 4 iff muk = 0. This
proves that i is injective. We have p(mvk) = 0 iff mwk = 0 iff m is divisible by 4, in which case we have
mvk = i(m/4)uk. Using this we see that img(i) = ker(p). Finally, any element of Wk can be written as mwk

for some m ∈ Z, and this is the same as p(mvk), so p is surjective.
(d) As d = 0 on U we have Z∗(U) = U and B∗(U) = 0 so H∗(U) = Z∗(U)/B∗(U) ≃ U∗. We write ak = [uk], so

Hk(U) is a copy of Z/4 generated by ak. Similarly, we write ck = [wk], so Hk(W ) is a copy of Z/4 generated
by ck. Next, it is easy to see that Zk(V ) is generated by 2vk but Bk(V ) is generated by 8vk. Thus, if we put
bk = [2vk] we find that 4bk = [8vk] = [d(vk+1)] = 0 and in fact Hk(V ) is a copy of Z/4 generated by bk. In
summary, for all three of our complexes, every homology group is isomorphic to Z/4.

(e) We have i∗(ak) = [i(uk)] = [4vk] = 2bk and p∗(bk) = [p(2vk)] = [2wk] = 2ck.
(f) Consider the sequence (ck, wk, vk, 2uk−1, 2ak−1). The element wk is a cycle representing the homology class

ck, and p(vk) = wk, and d(vk) = 8vk−1 = d(2uk−1), and 2uk−1 is a cycle representing the class 2ak−1. Thus,
the above sequence is a snake, showing that δ(ck) = 2ak−1. It follows that the long (i∗, p∗, δ)-sequence has the
form

. . . −→ Z/4 2−→ Z/4 2−→ Z/4 2−→ Z/4 2−→ Z/4 2−→ Z/4 2−→ . . . ,

and this is visibly exact, with img = ker = {0, 2} ⊂ {0, 1, 2, 3} = Z/4 at every stage.

Here are some pitfalls to look out for:

• It is tempting to write various expressions involving [vk], but this is not meaningful. We are working in the
group Hk(V ) = Zk(V )/Bk(V ), but d(vk) ̸= 0 so vk ̸∈ Zk(V ) so [vk] is undefined.

• In particular, it is not correct to rewrite [2vk] as 2[vk] or [4vk] as 4[vk] (but it is valid to note that [4vk] = 2[2vk]).
• It is tempting to say that [4vk] is divisible by 4 and so counts as zero in the group H1(V ) ≃ Z/4. But again,
this relies on writing [4vk] as 4[vk], which is invalid as we have explained. In fact, to say that the coset
[4vk] = 4vk +Bk(V ) is zero would mean that 4vk lies in the group Bk(V ) = img(d : Vk+1 → Vk), but it is easy
to see that Bk(V ) = {0, 8vk} so this is false.
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Exercise 2. Let U∗ and W∗ be chain complexes, and suppose we have maps fn : Wn → Un−1 that satisfy df =
−fd : Wn → Un−2. Put Vn = Un ⊕Wn and define d : Vn → Vn−1 by

d(u,w) = (d(u) + f(w), d(w)).

Define maps Un
i−→ Vn

p−→ Wn by i(u) = (u, 0) and p(u,w) = w.

(a) Prove that V∗ is a chain complex.

(b) Prove that i and p are chain maps and that the sequence U∗
i−→ V∗

p−→ W∗ is short exact.
(c) Prove that the resulting map δ : Hn(W ) → Hn−1(U) satisfies δ([w]) = [f(w)].

Solution:

(a) For (u,w) ∈ Vn we have d(u,w) = (d(u) + f(w), d(w)), and for (u′, w′) ∈ Vn−1 we have d(u′, w′) = (d(u′) +
f(w′), d(w′)). By taking u′ = d(u) + f(w) and w′ = d(w), and using df = −fd, we see that

d2(u,w) = d(d(u) + f(w), d(w))

= (d(d(u) + f(w)) + f(d(w)), d(d(w))) = (0 + d(f(w)) + f(d(w)), 0) = (0, 0).

This proves that d2 = 0 on V∗, so V∗ is a chain complex.
(b) We now note that

i(d(u)) = (d(u), 0) = (d(u) + f(0), d(0)) = d(u, 0) = d(i(u))

p(d(u,w)) = p(d(u) + f(w), d(w)) = d(w) = d(p(u,w)),

so i and p are chain maps. It is clear that img(i) = U∗ ⊕ 0 = ker(p), so the (i, p) sequence is short exact.
(c) Suppose we have a homology class w = [w] ∈ Hn(W ), so d(w) = 0. Put v = (0, w) ∈ Vn and u = f(w) ∈ Un−1.

As df = −fd we see that d(u) = −f(d(w)) = −f(0) = 0, so we have a well-defined element u = [u] ∈ Hn−1(U).
Now p(v) = w and d(v) = (d(0) + f(w), d(w)) = (f(w), 0) = i(u). This proves that the list (w,w, v, u, u) is a
snake, so δ(w) = u. By unwinding the notation, we can rewrite this as δ([w]) = [f(w)], as claimed.

Exercise 3. Let U∗
i−→ V∗

j−→ W∗ be a short exact sequence of chain complexes and chain maps. Suppose that the
groups Hn(U) and Hn(W ) are finite for all n, and are zero when n is odd. Prove that Hn(V ) is finite for all n, with
|Hn(V )| = |Hn(U)||Hn(W )|.

Solution: When n is odd we have an exact sequence

0 = Hn(U)
i∗−→ Hn(V )

p∗−→ Hn(W ) = 0.

As img(i∗) = 0 and ker(p∗) = Hn(V ) we see that Hn(V ) = 0, so |Hn(U)| = |Hn(V )| = |Hn(W )| = 1 and the relation
|Hn(V )| = |Hn(U)||Hn(W )| is trivially satisfied.

Suppose instead that n is even, so n− 1 and n+ 1 are odd. We then have an exact sequence

0 = Hn+1(W )
δ−→ Hn(U)

i∗−→ Hn(V )
p∗−→ Hn(W )

δ−→ Hn−1(U) = 0,

or in other words a short exact sequence Hn(U) → Hn(V ) → Hn(W ). It follows by Lemma 12.20 that Hn(V ) is finite
with |Hn(V )| = |Hn(U)||Hn(W )|.

Exercise 4. Let U∗
i−→ V∗

p−→ W∗ be a short exact sequence of chain maps between chain complexes. Suppose
that for every w ∈ Wk with dw = 0 there exists v ∈ Vk with dv = 0 and pv = w. Prove that the sequence

H∗(U)
i∗−→ H∗(V )

p∗−→ H∗(W ) is short exact.

Solution: Consider an element c ∈ Hk(W ). Choose a representing cycle w ∈ Zk(W ). By the assumption in
the question, we can choose v ∈ Vk with pv = w and dv = 0. In other words, the element 0 ∈ Uk−1 satisfies
i(0) = d(v). It follows that the sequence (c, w, v, 0, 0) is a snake, so δ(c) = 0. As c was arbitrary, the homomorphism
δ : Hk(W ) → Hk−1(U) is zero for all k. We know already that the sequence

Hk+1(W )
δ−→ Hk(U)

i∗−→ Hk(V )
p∗−→ Hk(W )

δ−→ Hk−1(U)

is exact. As δ = 0, it follows that i∗ is injective and p∗ is surjective. This means that the sequence Hk(U)
i∗−→

Hk(V )
p∗−→ Hk(W ) is short exact, as claimed.
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