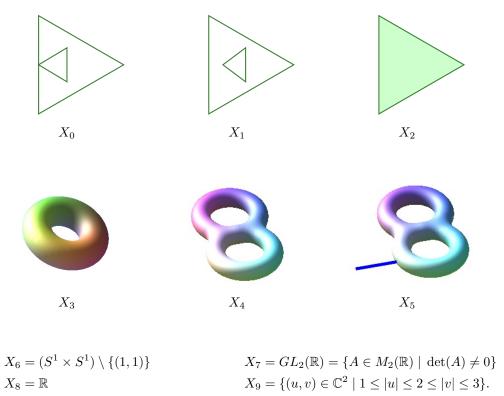
Algebraic Topology

(1) Consider the following spaces:



(Here X_3 and X_4 are closed orientable surfaces, and X_5 is the union of X_4 with a line segment with one endpoint lying on X_4 . Everything else should be clear.)

- (a) These 10 spaces can be grouped into 5 pairs $\{X_i, X_j\}$ such that X_i is homotopy equivalent to X_j . Find these pairs, and justify your answers. In each case you should prove that X_i is homotopy equivalent to X_j , and also that it is not homotopy equivalent to any of the other spaces. (25 marks)
- (b) For each pair $\{X_i, X_j\}$ as in (a), prove that X_i is not homeomorphic to X_j . (In one case you may need to appeal to some geometric intuition, but you should be able to give a more formal proof in the other four cases.) (15 marks)

Solution:

- (a) This will need to be marked as a whole. There will be 5 marks for correct identification of the pairs, 10 marks for justifying why they are homotopy equivalent, and a further 10 marks for explaining why there are no further equivalences. [15]
 - 1. X_0 consists of two circles meeting at a single point and so is homeomorphic to the figure eight. This is in turn homotopy equivalent to the punctured torus X_6 , as explained in Example 15.26 and the associated interactive demonstration.
 - 2. X_1 is homeomorphic to the union of two disjoint circles. On the other hand, Example 4.9 shows that the space $X_7 = GL_2(\mathbb{R})$ is homeomorphic to $\mathbb{R}^3 \times S^1 \times \{1, -1\}$, so it is homotopy equivalent to $S^1 \times \{1, -1\}$, which is again a union of two disjoint circles. Thus, X_1 is homotopy equivalent to X_7 .
 - 3. X_2 and X_8 are both contractible and so are homotopy equivalent to each other.

4. X_3 is just the torus $S^1 \times S^1$. There is a homeomorphism

$$p: [0,1]^2 \times X_3 = [0,1]^2 \times S^1 \times S^1 \to X_9$$

given by p(s,t,u,v) = ((1+s)u, (2+t)v), and $[0,1]^2$ is contractible, so X_3 is homotopy equivalent to X_9 .

5. The spaces X_4 and X_5 are homotopy equivalent. Indeed, the extra interval in X_5 can be parametrised as $\{u(t) \mid 0 \le t \le 1\}$, with u(0) being the end lying in X_4 . We have an evident inclusion $i: X_4 \to X_5$ and a retraction $r: X_5 \to X_4$ given by r(u(t)) = u(0) and r(x) = x for all $x \in X_4$. Then $r \circ i$ is equal to the identity. We can also define $h: [0,1] \times X_5 \to X_5$ by h(s,u(t)) = u(st) and h(s,x) = x for all $x \in X_4$. This gives a homotopy $i \circ r \simeq id$, so we have a homotopy equivalence as claimed.

If two spaces are homotopy equivalent, then they have isomorphic homology. We can tabulate the homology groups of the X_i as follows:

	H_0	H_1	H_2
X_0, X_6	\mathbb{Z}	\mathbb{Z}^2	0
X_1, X_7	\mathbb{Z}^2	\mathbb{Z}^2	0
X_2, X_8	\mathbb{Z}	0	0
X_3, X_9	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}
X_4, X_5	\mathbb{Z}	\mathbb{Z}^4	\mathbb{Z}

As all the lines are different, there are no additional homotopy equivalences [10]. There are also valid approaches using π_0 and π_1 . They are less clear and efficient, but can also be given full marks if done correctly.

(b) The space X_0 is compact but X_6 is not, so X_0 is not homeomorphic to X_6 [3]. Similarly X_1 is compact but X_7 is not [3], and X_2 is compact but X_8 is not [3]. Next, X_5 can be disconnected by removing a single point, but X_4 cannot, so X_4 and X_5 are not homeomorphic [3]. Finally X_3 and X_9 are not homeomorphic because X_3 is 2-dimensional and X_9 is 4-dimensional [3]. (This is not quite a complete proof, because we have not given a formal definition of dimensionality. The Invariance of Domain Theorem does most of what we need, but a bit more discussion would be required.)

(2)

- (a) Let A and B be finite abelian groups such that |A| and |B| are coprime.
 - (i) What can you say about homomorphisms from A to B? (10 marks)
 - (ii) Now suppose we have a short exact sequence $A \to U \to B$ of abelian groups. By considering the classification of finite abelian groups, or otherwise, what can you say about U? (15 marks)
- (b) Let X be a topological space, with open subspaces U and V such that $X = U \cup V$. Suppose that U, V, X and $U \cap V$ are all path-connected, and that for all k > 0 we have $H_k(U \cap V) = \mathbb{Z}/2^k$ and $H_k(U) = \mathbb{Z}/3^k$ and $H_k(V) = \mathbb{Z}/5^k$. Calculate $H_*(X)$. (15 marks)

Solution:

- (a) (i) The only homomorphism from A to B is the zero homomorphism [3]. Indeed, if $\phi: A \to B$ is a homomorphism then $\phi(A)$ is a subgroup of B and so has order dividing |B|. On the other hand, the First Isomorphism Theorem says that $|\phi(A)| = |A|/|\ker(\phi)|$, and this is a divisor of |A|. As |A| and |B| are coprime, we conclude that $|\phi(A)| = 1$, so $\phi(A) = \{0\}$, so $\phi = 0$. [7]
 - (ii) If $A \xrightarrow{f} U \xrightarrow{g} B$ is a short exact sequence, we claim that $U \simeq A \oplus B$ [3]. Indeed, we have $|U| = |A| \cdot |B|$. We can write U as a direct sum of groups of the form \mathbb{Z}/p^k . As $|U| = |A| \cdot |B|$ with |A| and |B| coprime, we see that p must divide |A| or |B| but not both. Let A' be the sum of all the factors where p divides |A|, and let B' be the sum of all the factors where p divides |B|, so $U = A' \oplus B'$. The homomorphism $f: A \to A' \oplus B'$ can be decomposed into a pair of homomorphisms $f_0: A \to A'$ and $f_1: A \to B'$. The homomorphism $f_0: A' \oplus B' \to B$ can be decomposed into a pair of homomorphisms $f_0: A' \to B$ and $f_0: A' \to B$ and $f_0: A' \to B$. Here $f_0: A' \to B'$ are zero by part (i). As $f_0: A' \to B'$ we have $f_0: A' \to B'$ and $f_0: A' \to B'$ as $f_0: A' \to B'$. Also, as $f_0: A' \to B'$ is injective, and as $f_0: A' \to B'$ as claimed. It now follows that $f_0: A' \to B'$ and $f_0: A' \to B'$ as claimed. It now follows that $f_0: A' \to B'$ and $f_0: A' \to B'$ as claimed. In part $f_0: A' \to B'$ and $f_0: A' \to B'$ and $f_0: A' \to B'$ and $f_0: A' \to B'$ as claimed. It now follows that $f_0: A' \to B'$ as claimed. In part $f_0: A' \to B'$ and $f_0: A' \to B'$ and $f_0: A' \to B'$ as claimed. In part $f_0: A' \to B'$ and $f_0: A' \to$

(b) The connectivity assumptions mean that $H_0(X) = \mathbb{Z}$ and that we have a truncated Mayer-Vietoris sequence [2]. For k > 1 this takes the form

$$\mathbb{Z}/2^k \xrightarrow{e} \mathbb{Z}/3^k \oplus \mathbb{Z}/5^k \xrightarrow{f} H_k(X) \xrightarrow{g} \mathbb{Z}/2^{k-1} \xrightarrow{e} \mathbb{Z}/3^{k-1} \oplus \mathbb{Z}/5^{k-1}.$$
[3]

The maps marked e are zero by (a)(i) [2], so f is injective and g is surjective by exactness [4], which means that the middle three terms form a short exact sequence. Thus, (a)(ii) tells us that

$$H_k(X) = \mathbb{Z}/3^k \oplus \mathbb{Z}/5^k \oplus \mathbb{Z}/2^{k-1} = \mathbb{Z}/(30^k/2)$$
[4]

(where we have used the Chinese Remainder Theorem to tidy up the final answer a little). This formula remains valid for k = 1, although the argument is a tiny bit different.