
Algebraic Topology

(1) Consider the following spaces:

X0 X1 X2

X3 X4 X5

X6 = (S1 × S1) \ {(1, 1)} X7 = GL2(R) = {A ∈M2(R) | det(A) 6= 0}
X8 = R X9 = {(u, v) ∈ C2 | 1 ≤ |u| ≤ 2 ≤ |v| ≤ 3}.

(Here X3 and X4 are closed orientable surfaces, and X5 is the union of X4 with a line segment with one endpoint
lying on X4. Everything else should be clear.)

(a) These 10 spaces can be grouped into 5 pairs {Xi, Xj} such that Xi is homotopy equivalent to Xj . Find these
pairs, and justify your answers. In each case you should prove that Xi is homotopy equivalent to Xj , and also
that it is not homotopy equivalent to any of the other spaces. (25 marks)

(b) For each pair {Xi, Xj} as in (a), prove that Xi is not homeomorphic to Xj . (In one case you may need to appeal
to some geometric intuition, but you should be able to give a more formal proof in the other four cases.) (15
marks)

Solution:

(a) This will need to be marked as a whole. There will be 5 marks for correct identification of the
pairs, 10 marks for justifying why they are homotopy equivalent, and a further 10 marks for
explaining why there are no further equivalences. [15]

1. X0 consists of two circles meeting at a single point and so is homeomorphic to the figure eight. This is in
turn homotopy equivalent to the punctured torus X6, as explained in Example 15.26 and the associated
interactive demonstration.

2. X1 is homeomorphic to the union of two disjoint circles. On the other hand, Example 4.9 shows that the
space X7 = GL2(R) is homeomorphic to R3 × S1 × {1,−1}, so it is homotopy equivalent to S1 × {1,−1},
which is again a union of two disjoint circles. Thus, X1 is homotopy equivalent to X7.

3. X2 and X8 are both contractible and so are homotopy equivalent to each other.
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4. X3 is just the torus S1 × S1. There is a homeomorphism

p : [0, 1]2 ×X3 = [0, 1]2 × S1 × S1 → X9

given by p(s, t, u, v) = ((1 + s)u, (2 + t)v), and [0, 1]2 is contractible, so X3 is homotopy equivalent to X9.

5. The spaces X4 and X5 are homotopy equivalent. Indeed, the extra interval in X5 can be parametrised as
{u(t) | 0 ≤ t ≤ 1}, with u(0) being the end lying in X4. We have an evident inclusion i : X4 → X5 and
a retraction r : X5 → X4 given by r(u(t)) = u(0) and r(x) = x for all x ∈ X4. Then r ◦ i is equal to the
identity. We can also define h : [0, 1]×X5 → X5 by h(s, u(t)) = u(st) and h(s, x) = x for all x ∈ X4. This
gives a homotopy i ◦ r ' id, so we have a homotopy equivalence as claimed.

If two spaces are homotopy equivalent, then they have isomorphic homology. We can tabulate the homology
groups of the Xi as follows:

H0 H1 H2

X0, X6 Z Z2 0

X1, X7 Z2 Z2 0

X2, X8 Z 0 0

X3, X9 Z Z2 Z
X4, X5 Z Z4 Z

As all the lines are different, there are no additional homotopy equivalences [10]. There are also valid
approaches using π0 and π1. They are less clear and efficient, but can also be given full marks if
done correctly.

(b) The space X0 is compact but X6 is not, so X0 is not homeomorphic to X6 [3]. Similarly X1 is compact but X7

is not [3], and X2 is compact but X8 is not [3]. Next, X5 can be disconnected by removing a single point, but
X4 cannot, so X4 and X5 are not homeomorphic [3]. Finally X3 and X9 are not homeomorphic because X3 is
2-dimensional and X9 is 4-dimensional [3]. (This is not quite a complete proof, because we have not given a
formal definition of dimensionality. The Invariance of Domain Theorem does most of what we need, but a bit
more discussion would be required.)

(2)

(a) Let A and B be finite abelian groups such that |A| and |B| are coprime.

(i) What can you say about homomorphisms from A to B? (10 marks)

(ii) Now suppose we have a short exact sequence A→ U → B of abelian groups. By considering the classification
of finite abelian groups, or otherwise, what can you say about U? (15 marks)

(b) Let X be a topological space, with open subspaces U and V such that X = U ∪ V . Suppose that U , V , X
and U ∩ V are all path-connected, and that for all k > 0 we have Hk(U ∩ V ) = Z/2k and Hk(U) = Z/3k and
Hk(V ) = Z/5k. Calculate H∗(X). (15 marks)

Solution:

(a) (i) The only homomorphism from A to B is the zero homomorphism [3]. Indeed, if φ : A → B is a homo-
morphism then φ(A) is a subgroup of B and so has order dividing |B|. On the other hand, the First
Isomorphism Theorem says that |φ(A)| = |A|/| ker(φ)|, and this is a divisor of |A|. As |A| and |B| are
coprime, we conclude that |φ(A)| = 1, so φ(A) = {0}, so φ = 0. [7]

(ii) If A
f−→ U

g−→ B is a short exact sequence, we claim that U ' A⊕B [3]. Indeed, we have |U | = |A|.|B|. We
can write U as a direct sum of groups of the form Z/pk. As |U | = |A|.|B| with |A| and |B| coprime, we see
that p must divide |A| or |B| but not both. Let A′ be the sum of all the factors where p divides |A|, and let
B′ be the sum of all the factors where p divides |B|, so U = A′ ⊕B′. The homomorphism f : A→ A′ ⊕B′
can be decomposed into a pair of homomorphisms f0 : A → A′ and f1 : A → B′. The homomorphism
g : A′ ⊕ B′ → B can be decomposed into a pair of homomorphisms g0 : A′ → B and g1 : B′ → B. Here f1
and g0 are zero by part (i). As f1 = 0 we have img(f) ≤ A′, and as g0 = 0 we have ker(g) ≥ A′. As the
sequence is exact we have img(f) = ker(g), so this group must be equal to A′. Also, as f is injective we
see that f0 is injective, and as g is surjective we see that g1 is surjective. It now follows that f0 and g1 are
isomorphisms, and thus that U = A′ ⊕B;' A⊕B as claimed. [12]
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(b) The connectivity assumptions mean that H0(X) = Z and that we have a truncated Mayer-Vietoris sequence [2].
For k > 1 this takes the form

Z/2k e−→ Z/3k ⊕ Z/5k f−→ Hk(X)
g−→ Z/2k−1 e−→ Z/3k−1 ⊕ Z/5k−1.[3]

The maps marked e are zero by (a)(i) [2], so f is injective and g is surjective by exactness [4], which means that
the middle three terms form a short exact sequence. Thus, (a)(ii) tells us that

Hk(X) = Z/3k ⊕ Z/5k ⊕ Z/2k−1 = Z/(30k/2)[4]

(where we have used the Chinese Remainder Theorem to tidy up the final answer a little). This formula remains
valid for k = 1, although the argument is a tiny bit different.
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