

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2016–2017

MAS435 Algebraic Topology

2 hours 30 minutes

Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.

- 1 (i) What is a *topological space*? If X is a topological space and \sim is an equivalence relation on X, define the *quotient topology* on $Y := X/\sim$. (5 marks)
 - (b) Suppose X is a topological space, give $Y = X/\sim$ the quotient topology, and let $\pi: X \longrightarrow Y$ be the quotient map. Prove that if $f: Y \longrightarrow Z$ is a function, then f is continuous if and only if $f \circ \pi$ is continuous. Prove that if X is compact then Y is compact. Does the reverse implication hold? (7 marks)
 - (ii) (a) If X is a topological space and $x_0 \in X$, what is a *loop* based at x_0 ? (2 marks)
 - (b) Suppose that ω , σ are two loops based at x_0 , define the *reverse* loop $\overline{\omega}$ and the *concatenated* loop $\omega \cdot \sigma$. Show that $\omega \cdot \overline{\omega}$ is loophomotopic to the constant loop. (7 marks)
 - (c) Show that if ω is any loop in X based at x_0 , then there is a continuous map $f: S^1 \longrightarrow X$ so that $[\omega] \in \operatorname{im}(f_*: \pi_1(S^1, 1) \longrightarrow \pi_1(X, x_0))$. Deduce that if $\pi_1(X, x_0)$ is non-trivial for some topological space X, then so too is $\pi_1(S^1, 1)$. (4 marks)

1 Turn Over

- 2 (i) (a) What is a covering map? (4 marks)
 - (b) State the Path Lifting Lemma for a covering map $p: Y \longrightarrow X$, and explain how it can be used to define a function

$$\ell: \pi_1(X, x_0) \longrightarrow p^{-1}(x_0),$$

where $x_0 \in X$. State conditions under which ℓ is a bijection.

(8 marks)

- (ii) Show that if Y is a Hausdorff space and y_1, \ldots, y_n are n distinct points then there are disjoint open sets V_1, \ldots, V_n with $y_i \in V_i$.

 (2 marks)
 - (b) Suppose G is a finite group of order n acting freely on a Hausdorff space Y (i.e., for any $y \in Y$ the orbit $\{gy \mid g \in G\}$ of y has n elements). Show that if X = Y/G is the space of orbits with the quotient topology, then the quotient map $q: Y \longrightarrow X$ is a covering map. (6 marks)
 - (c) Assuming that the group SU(n) is simply connected and G is a finite subgroup of SU(n), construct a space with fundamental group G. [The group SU(n) consists of $n \times n$ complex matrices A with $A\overline{A}^t = I$ and $\det(A) = 1$, but all you need to know is that it is Hausdorff and that the group multiplication is continuous.]

(5 marks)

- 3 (i) (a) What is a *chain complex* of abelian groups? What is the *homology* of such a chain complex? (4 marks)
 - (b) State the Mayer-Vietoris Theorem for calculating the homology of a simplicial complex $K = L \cup M$ expressed as the union of two subcomplexes L and M. (5 marks)
 - (ii) (a) If K is a simplicial complex and P is a new vertex, what is the Pcone c_PK on K? Show that for any K, the homology of c_PK is the
 homology of a point. (10 marks)
 - (b) Suppose L is a geometric simplicial complex in \mathbb{R}^n and take the two points $N=(0,\ldots,0,+1), S=(0,\ldots,0,-1)$ in \mathbb{R}^{n+1} . Let $\Sigma L=c_NL\cup c_SL$ be the union of the N-cone and the S-cone on L, and show that

$$H_{i+1}(\Sigma L) = H_i(L)$$

for $i \ge 1$. (6 marks)

- 4 (i) Suppose that C_{\bullet} is a chain complex with only finitely many terms non-zero and all terms finite dimensional vector spaces over \mathbb{Q} . What is the Lefschetz number $\Lambda(\theta)$ of a chain map $\theta: C_{\bullet} \longrightarrow C_{\bullet}$?

 (2 marks)
 - (b) Show that $\Lambda(\theta) = \Lambda(\theta_*)$ where $\theta_* : H_*(C_{\bullet}) \longrightarrow H_*(C_{\bullet})$ is the induced map in homology. (6 marks)
 - (c) State the Lefschetz Fixed Point Theorem. (2 marks)
 - (ii) Consider maps $f: M(g) \longrightarrow M(g)$, where M(g) denotes a compact orientable surface of genus $g \ge 0$.
 - (a) Write down the homology of M(g). For which g is there a self-map f without fixed points so that $f \simeq id_{M(g)}$? (7 marks)
 - (b) Suppose that $f \simeq id$ and that f is a simplicial isomorphism for some triangulation. Show that f cannot have exactly one fixed point P. [Hint: Consider f restricted to the punctured surface $M(g) \setminus \{P\}$.]

 (8 marks)
- 5 Are the following true or false. Justify your answers.
 - (i) Any self-map of the projective plane $\mathbb{R}P^2$ has a fixed point. (5 marks)
 - (ii) \mathbb{R}^2 is homeomorphic to \mathbb{R}^3 . (5 marks)
 - (iii) There is a covering map $T^2 \longrightarrow S^2$ from the 2-torus to the 2-sphere. (5 marks)
 - (iv) If X is obtained from the 2-torus \mathcal{T}^2 by deleting one point, then X is homotopy equalent to a 1-dimensional geometric simplicial complex. (5 marks)
 - (v) The space $X = S^2 \cup \overline{B}^2$ is homotopy equivalent to S^2 . [Here S^2 is the unit sphere in \mathbb{R}^3 centred at the origin and \overline{B}^2 is the unit disc in the (x, y)-plane centred at the origin.] (5 marks)

End of Question Paper