
MAS334 COMBINATORICS — PROBLEM SHEET 2 — Solutions

Please hand in exercises 2.1 and 2.5 by the end of Week 4.

Exercise 2.1. Consider the following boards:

(a) (b) (c)

(The black squares do not count as part of the boards.) Which of these can be covered by disjoint dominos?

Solution: Consider the following pictures:

(a) (b) (c)

∗

∗

We have coloured board (a) in the standard way, so every domino covers one white square and one grey
square. There are 4 white squares and 6 grey squares, so no set of disjoint dominos can cover the whole of
board (a). There are many ways of covering board (b), of which we have shown just one. Board (c) has 5
white squares and 5 grey squares, so we might be tempted to guess that it can also be covered by disjoint
dominos, but that guess would not be correct. The only way to cover the leftmost square is to place a domino
as shown above. Having done that, there is clearly no way to cover the two starred squares.
Feedback: Note that in (b), it is not enough to say that the number of white squares is the same as the
number of grey squares. As board (c) shows, it is not always possible to cover the board even if the numbers
are the same. For board (b), you need to actually draw the dominos to prove that covering is possible.

Also, some students wanted to analyse board (c) by dividing it into two 3× 3 boards, and showing that
neither of those boards can be covered. This could be part of a correct analysis, but you also need to discuss
what happens if you place a domino that bridges between the two boards, as shown below.

Exercise 2.2. On an n× n board there are n2 chess pieces, one on each square. I wish to move each piece
to an adjacent square (in the same row or column) so that after all the n2 pieces have moved there is still
one piece on each square.

1



(a) Show that this can be done if n is even. (Give explicit instructions for where to move each piece,
not just an abstract argument to suggest that it is possible.)

(b) By a colourful argument show that it cannot be done if n is odd. (It is not enough to try some plau-
sible approach and show that that approach fails. There might be some complicated and nonobvious
pattern of movement that does the job. You need to give a proper proof to show that that cannot
happen.)

Solution:

(a) In the cases where n is even it is easy to see that such moves are possible. For example, we can swap
the piece in position (i, 2j − 1) with the one in position (i, 2j), for i = 1, . . . , n and j = 1, . . . , n/2.
This is shown on the left below, for the case n = 6. However, there are also many other possibilities,
such as the one shown on the right below.

(b) Now consider the case of an n × n board, where n is odd. Picture the board chequered with black
and white squares in the usual chess-board fashion. As n is odd there will be more white squares
than black, say (with 1

2 (n
2+1) white and 1

2 (n
2− 1) black). Now each move to an adjacent square is

from a black square to a white or vice-versa. But there are more white squares than black so not all
the pieces moving from the white squares will fit onto the black ones. So such moves are impossible
in the odd case.

Feedback:

(a) Note that a correct answer to this question must include an actual description of how to move the
pieces. It is not enough to give some vague argument about why it should be possible.

(b) Note that we need to consider the possibility of complicated patterns like the one shown on the right
above, not just patterns where we swap adjacent pieces in pairs. Any proof in terms of dominos and
swapping adjacent pairs is incomplete.

Note also the example of the following distorted board (which cannot be coloured black and white
in the usual way):

The number of squares is five, which is odd, but it is still possible to move each piece to an adjacent
square. This shows that any correct proof must use the colouring of squares, not just the fact that
the number of squares is odd. Also, it is not enough to give a solution for the even case, and show
that essentially the same solution does not work for the odd case. Just because one method fails for
the odd case, we cannot conclude that every possible method fails.

Exercise 2.3. Consider the following networks of nodes and bridges:
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(a) (b)

In each case, say whether it is possible to have a circular tour that crosses each bridge precisely once, and
also whether it is possible to have a non-circular tour that crosses each bridge precisely once.

Solution: In network (a), the top left and bottom right nodes have three bridges, and all other nodes have
four bridges. According to Remark 3.6, there cannot be a circular tour, but there might be a non-circular
one. In fact, the following picture shows a non-circular tour.

In network (b), all four of the outer nodes have an odd number of bridges, so we have no tour of either type.

Exercise 2.4. Given any positive integer n ≥ 1, if we divide by two repeatedly we will eventually get to an
odd number. Thus, we have n = 2tm for some t ≥ 0 and some odd number m. We call m the odd part of n.
For example, 60 = 22 × 15, so the odd part of 60 is 15.

Show that, given any n + 1 different positive integers less than or equal to 2n, there will exist two with
the same odd part. Deduce that one of those numbers is a multiple of the other.

Solution: Suppose that a1, . . . , an+1 are numbers in [1, 2n], with all of them being different. Let bi be the
odd part of ai. This is odd and less than or equal to 2n, so it lies in the set

B = {1, 3, 5, . . . , 2n− 1} = {2i− 1 | i = 1, . . . , n},
which has |B| = n. As the sequence b1, . . . , bn+1 is longer than the size of B, there must be a repeat, say
bi = bj = c for some i < j. Thus, ai and aj have the same odd part. Note also that ai = 2rc and aj = 2sc
for some r, s ≥ 0. If r ≥ s then ai is a multiple of aj , and if r ≤ s then aj is a multiple of ai.

Exercise 2.5. Let n be a positive integer. By considering numbers of the form 1, 11, 111, . . . and their
remainders modulo n, show that there exists a number of the form 11 . . . 10 . . . 00 which is a multiple of n.

Solution: Put am = 11 · · · 1 (with m digits), or equivalently am =
∑m−1

i=0 10i = (10m − 1)/9. Fix n > 1,
and put am = am (mod n), so am lies in the set N = {0, 1, . . . , n− 1}. As |N | = n we see that the numbers
a1, . . . , an+1 cannot all be different. There must therefore exist indices p, q with 1 ≤ p < q ≤ n + 1 with
aq = ap. This means that the number b = aq − ap is divisible by n. Moreover, b has the form 1 · · · 10 · · · 0,
with q − p ones followed by p zeros.
Feedback: It is important to distinguish clearly between the numbers am (which lie in {0, . . . , n− 1}, but
which do not have any special pattern of digits) and the numbers am (which have a simple pattern of digits,
but do not usually lie in {0, . . . , n− 1}).
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Exercise 2.6. Prove that there exist two different powers of 7 whose difference is divisible by 1000.

Solution: Put ak = 7k (mod 1000), so ak ∈ [0, 1000). The set [0, 1000) only has 1000 elements, so the
numbers a1, . . . , a1001 cannot all be different, so we can find i < j with ai = aj . This means that 7j = 7i

(mod 1000), so 7j − 7i is divisible by 1000. (In fact, one can check directly that 720 = 1 (mod 1000), and so
7i+20 − 7i is divisible by 1000 for all i.)

Exercise 2.7. Let a1, . . . , a50 be points in the unit square [0, 1]2. Show that there are indices i < j such
that the distance from ai to aj is less than 0.21. (Hint: divide the square into small boxes and apply the
pigeonhole principle.)

Solution: For u, v ∈ {1, . . . , 7}, put Quv = [(u − 1)/7, u/7] × [(v − 1)/7, v/7]. This gives a grid of 72 = 49
small squares with sides of length 1/7, and together they cover the whole of the unit square.

Because we have 50 points and 49 boxes, there must be some box Quv that contains at least two of our
points, so we can choose i < j with ai, aj ∈ Quv. It is clear that the distance between ai and aj is at most
as large as the distance between opposite corners of Quv. As the sides of Quv have length 1/7, we see that

the distance between opposite corners is
√
2/7 ≃ 0.202 < 0.21.

Exercise 2.8. Using the pigeonhole principle, explain why there is no compression algorithm that can
compress every possible 8MB file down to 1MB in such a way that it can be uncompressed without errors.

Solution: Let f1, . . . , fn be the list of all possible 8MB files, and let m be the number of possible 1MB
files. It is clear that n is much bigger than m. In fact, an 8MB file can be regarded as a sequence of 8 files
of size 1MB, which shows that n = m8. If we want precise numbers, we can recall that 1MB is officially

220 bytes or 28×20 = 2160 ≃ 1.46 × 1048 bits, so m = 22
160

, which is ridiculously enormous. We then have

n = m8 = 28×2160 = 22
163

, which is even more ridiculously enormous. Now suppose we have a compression
algorithm, which converts each 8MB file to a 1MB file. Let f i be the compressed form of fi. There are
only m possibilities for f i, so the files f1, . . . , fn cannot all be different. There must therefore exist indices
i < j and a 1MB file g such that f i = f j = g. If the uncompression process works correctly then it must
convert g to fi, and it must also convert g to fj , but this is impossible because fi ̸= fj .

Of course, normal human activity produces computer files that have a lot of non-random structure, and it
is possible to design compression algorithms that work well on such files. However, for every such algorithm,
it is possible to come up with strangely random files that actually get bigger when you try to compress them.

Exercise 2.9. Lemma 5.4 says that for a finite, nonempty set I we have
∑

J⊆I(−1)|J| = 0. Check this

explicitly in the case I = {a, b, c}.

Solution: We can list the subsets J ⊆ I, the sizes |J | and the terms (−1)|J| as follows:

J ∅ a b c ab ac bc abc
|J | 0 1 1 1 2 2 2 3

(−1)|J| 1 −1 −1 −1 1 1 1 −1

This gives ∑
J⊆I

(−1)|J| = 1 + (−1) + (−1) + (−1) + 1 + 1 + 1 + (−1) = 0,

as expected.
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Exercise 2.10. Suppose that we choose a number k ∈ {0, 1, . . . , 999} at random. What is the probability
that k and 1000 are coprime?

Solution: The primes dividing 1000 are 2 and 5. Thus, Proposition 5.13 tells us that the answer is

x = (1− 1
2 )(1−

1
5 ) =

1
2 × 4

5 = 0.4.

Exercise 2.11. Suppose we have a set B with subsets B1, . . . , B4 such that B = B1 ∪ · · · ∪ B4 and |B| is
odd. Suppose there are numbers n1, n2, n3 such that

• |Bi| = n1 for all i
• |Bij | = n2 for all i < j
• |Bijk| = n3 for all i < j < k.

Prove that |B1234| is odd.

Solution: The positive form of the IEP gives

|B| = |B1 ∪B2 ∪B3 ∪B4| =
∑
i

|Bi| −
∑
i<j

|Bij |+
∑

i<j<k

|Bijk| − |B1234|.

On the right hand side, the first sum has 4 terms all equal to n1. The second sum has
(
4
2

)
= 6 terms, all

equal to n2. The third sum has
(
4
3

)
= 4 terms, all equal to n3. The equation therefore becomes

|B| = 4n1 − 6n2 + 4n3 − |B1234|.

From this it is clear that |B1234| = |B| (mod 2). We are given that |B| is odd, and it follows that |B1234| is
also odd.

Exercise 2.12. Consider the set X = [2, 1000] = {2, 3, 4, . . . , 1000}. For each prime p, let Xp be the
subset of numbers in X that are divisible by p. As in the Inclusion-Exclusion Principle, we write Xp,q,r for
Xp ∩Xq ∩Xr, and so on. We will investigate the sizes of some sets related to these. It will be helpful to use
the notation

⌊x⌋ = largest integer n such that n ≤ x

(so for example ⌊7.01⌋ = ⌊7.89⌋ = ⌊7.77⌋ = 7).

(a) Show that |X2| = 5000 and |X2,3| = 1666.
(b) Give a formula for |Xp,q,r|.
(c) Using the IEP, show that there are precisely 7334 numbers in X that are divisible by at least one of

the primes 2, 3 and 5. Of these 7334 numbers, show that 3 are prime and 7331 are not prime.
(d) Give an upper bound for the number of primes in X. How would this bound change if we tested for

divisibility by 7 as well as 2, 3 and 5?

Solution:

(a) First, we have

X2 = {2, 4, 6, . . . , 1000} = {2k | 1 ≤ k ≤ 5000},

so |X2| = 5000. Next, note that a number lies in X2,3 iff it is divisible by both 2 and 3, iff it is
divisible by 6. Moreover, we have 6k ≤ 10000 iff

k ≤ ⌊10000/6⌋ = ⌊1666.666 . . . ⌋ = 1666.

This means that X2,3 = {6k | 1 ≤ k ≤ 1666}, and so |X2,3| = 1666.
(b) Similarly, Xp,q,r is the set of numbers x ∈ X that are divisible by p, q and r. As p, q and r are

distinct primes, we see that x is divisible by p, q and r iff it is divisible by the product pqr. This
means that

Xp,q,r = {pqrk | 1 ≤ k ≤ ⌊10000/(pqr)⌋},

and so |Xp,q,r| = ⌊10000/(pqr)⌋.
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(c) We are asked to find |Y |, where Y = X2 ∪X3 ∪X5. By the IEP, this is given by

|Y | = |X2|+ |X3|+ |X5| − |X2,3| − |X2,5| − |X3,5|+ |X2,3,5|

=

⌊
104

2

⌋
+

⌊
104

3

⌋
+

⌊
104

5

⌋
−

⌊
104

2× 3

⌋
−

⌊
104

2× 5

⌋
−
⌊

104

3× 5

⌋
+

⌊
104

2× 3× 5

⌋
= 5000 + 3333 + 2000− 1666− 1000− 666 + 333 = 7334.

Note that Y includes the numbers 2, 3 and 5 themselves, which are prime. Each of the remaining
7331 elements of Y has the form 2k or 3k or 5k with k > 1, and so is visibly not prime.

(d) We have seen that there are at least 7331 non-prime elements of X, and |X| = 9999, so there are
at most 9999− 7331 = 2668 primes in X. To get a slightly better estimate, we can consider the set
Z = X2 ∪ X3 ∪ X5 ∪ X7. By the same method as above, we find that |Z| = 7715. Moreover, the
numbers 2, 3, 5, 7 are the only primes in Z, so we have at least 7711 non-primes. This means that
there are at most 9999 − 7711 = 2288 primes in X. (In fact, the actual number of primes in X is
1229.)

Exercise 2.13. Let A and B be finite sets, with |A| = m and |B| = n say. We will assume that m ≥ n. Let
F be the set of all functions from A to B. For each b ∈ B, let Fb ⊆ F be the subset of functions f : A → B
such that b ̸∈ f(A). We also let E ⊆ F be the set of surjective functions.

(a) Explain why |F | = nm.
(b) Show that |Fb| = (n− 1)m for all b ∈ B.
(c) Show that for b ̸= c in B we have |Fb ∩ Fc| = (n− 2)m.
(d) Give a formula for E in terms of the sets Fb.
(e) By applying the negative IEP to your formula in (d), prove that

|E| =
n∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Solution:

(a) List the elements of A as a1, . . . , am. To specify a function f : A → B, we need to choose the image
f(ai) ∈ B for i = 1, . . . ,m. As |B| = n, there are n choices for each value f(ai). This gives nm

choices in total.
(b) To choose an element f ∈ Fb, we again need to choose the values f(ai) for i = 1, . . . ,m. To ensure

that f lies in Fb, we need to make sure that f(ai) ̸= b for all i. This means that each value f(ai)
must lie in the set B \ {b}, which has size n− 1. We therefore get |Fb| = (n− 1)m.

(c) Similarly, to choose an element f ∈ Fb ∩Fc, we need to choose the values f(ai) for i = 1, . . . ,m, and
all of these must lie in the set B \ {b, c}, which has size n− 2. This gives |Fb ∩ Fc| = (n− 2)m.

(d) A function f : A → B is surjective iff for every element b ∈ B we have b ∈ f(A), so f ̸∈ Fb. Thus,
we have

E = {f | ∀b, f ̸∈ Fb} = {f | f /∈
⋃
b

Fb} = F \
⋃
b

Fb.

(e) The negative form of the IEP now tells us that

|E| =

∣∣∣∣∣F \
⋃
b

Fb

∣∣∣∣∣ = ∑
I⊆B

(−1)|I||FI |.

Generalizing parts (b) and (c) in an obvious way, we see that if |I| = k then |FI | = (n − k)m.
Moreover, there are

(
n
k

)
possible choices of I with |I| = k. This gives

|E| =
n∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Exercise 2.14.

(a) Explain briefly why there are
(
n−1
k−1

)
positive integer solutions of the equation

x1 + x2 + · · ·+ xk = n.
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(b) Use the Inclusion/Exclusion Principle to find the number of positive integer solutions of the equation

x1 + x2 + x3 = 20

satisfying the conditions x1 ≤ 5, x2 ≤ 10 and x3 ≤ 15.

Solution:Part (a) is in the lecture notes and will not be repeated here. For part (b), put

X = {(x1, x2, x3) | x1 > 0, x2 > 0, x3 > 0, x1 + x2 + x3 = 20}
X1 = {x ∈ X | x1 > 5}
X2 = {x ∈ X | x2 > 10}
X3 = {x ∈ X | x3 > 15}
Y = {x ∈ X | x1 ≤ 5, x2 ≤ 10, x3 ≤ 15}.

We are asked to find |Y |. It is easy to see that Y = X \ (X1 ∪X2 ∪X3), so we can use the negative form of
the IEP to get

|Y | = |X| − |X1| − |X2| − |X3|+ |X12|+ |X13|+ |X23| − |X123|.
Part (a) tells us that |X| =

(
19
2

)
= 171. For a solution x ∈ X13 we must have x1 > 5 and x2 > 0 and x3 > 15

and x1 + x2 + x3 = 20, but this is clearly impossible, so X13 = ∅ and |X13| = 0. The same argument shows
that X23 = X123 = ∅, so the IEP equation simplifies to

|Y | = 171− |X1| − |X2| − |X3|+ |X12|.

To understand the remaining terms, we put y1 = x1 − 5 and y2 = x2 − 10 and y3 = x3 − 15, so that yi > 0
for solutions in Xi.

• X1 is the set of positive solutions to y1 + x2 + x3 = 15, so |X1| =
(
14
2

)
= 91.

• X2 is the set of positive solutions to x1 + y2 + x3 = 10, so |X2| =
(
9
2

)
= 36.

• X3 is the set of positive solutions to x1 + x2 + y3 = 5, so |X3| =
(
4
2

)
= 6.

• X12 is the set of positive solutions to y1 + y2 + x3 = 5, so |X12| =
(
4
2

)
= 6.

We now have

|Y | = 171− 91− 36− 6 + 6 = 44.

Exercise 2.15. Let P be the set of permutations of {1, . . . , 9}. Let Q be the subset of permutations σ ∈ P
satisfying σ(i) + i ≤ 10 for all i. Let R be the subset of permutations σ ∈ P satisfying σ(i) = i (mod 3) for
all i. Find |P |, |Q| and |R|.

Solution: It is standard that |P | = 9! = 362880. If σ ∈ Q then we must have σ(9) + 9 ≤ 10 so σ(9) ≤ 1
but σ(9) ∈ {1, . . . , 9} so σ(9) = 1. We then have σ(8) + 8 ≤ 10 so σ(8) ∈ {1, 2}, but σ(8) must be different
from σ(9), so σ(8) = 2. We then have σ(7) + 7 ≤ 10 so σ(7) ∈ {1, 2, 3}, but σ(7) must be different from
σ(8) and σ(9), so σ(7) = 3. By proceding in the same way, we find that σ(i) = 10− i for all i. In particular,
there is only one possible choice for σ, so |Q| = 1. Finally, any permutation σ ∈ R must permute the sets
N1 = {1, 4, 7}, N2 = {2, 5, 8} and N3{3, 6, 9} separately. There are six possible choices for the effect of σ on
N1, and six possible choices for the effect of σ on N2, and six possible choices for the effect of σ on N3. This
gives |R| = 63 = 216.

Exercise 2.16. Put B = {1, . . . , n} and Bi = {1, . . . , i} ⊆ B for i = 1, . . . , n. Put B′ = B1 ∪ · · · ∪ Bn.
What is |B′|? (The answer is obvious.) Check that the IEP gives the same as the obvious answer. (Hint:
group the nonempty subsets I ⊆ {1, . . . , n} according to their minimum elements.)

Solution: As B = Bn ⊆ B1 ∪ · · · ∪ Bn = B′ ⊆ B we see that B′ = B and so |B′| = |B| = n. On the other
hand, the IEP tells us that |B′| =

∑
I ̸=∅(−1)|I|+1|BI |. We can group the terms as in the hint to give

|B′| =
n∑

m=1

∑
min(I)=m

(−1)|I|+1|BI |.
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Now suppose that min(I) = m, so I = {m, i1, . . . , ir} for some i1, . . . , ir > m. We then have Bm ⊂ Bit for
all t, so

BI = Bm ∩Bi1 ∩ · · · ∩Bir = Bm,

so |BI | = |Bm| = m. The IEP formula now becomes

|B′| =
n∑

m=1

m
∑

min(I)=m

(−1)|I|+1.

Now fix m and put M = {m + 1, . . . , n}. Any subset I with min(I) = m can be expressed as I = {m} ∪ J
with J an arbitrary subset of M . This gives (−1)|I|+1 = (−1)|J|. By taking the sum over all J , we get∑

min(I)=m(−1)|I|+1 =
∑

J⊆M (−1)|J|. By Lemma 5.4, this is zero unless M = ∅, which only occurs when

m = n. Thus, in our IEP formula we can discard the terms for m = 1, . . . , n− 1. In the case m = n the only
relevant set I is I = {n} with (−1)|I|+1 = 1, so we get |B′| = n, which agrees with the obvious answer.

Exercise 2.17. Put B = {0, 1, . . . , 15}. Any number k ∈ B can be expressed in base 2 with four binary
digits, for example

11 = 8 + 2 + 1 = 1.23 + 0.22 + 1.21 + 1.20 = 10112.

Let Bi be the subset of those k ∈ B such that the binary expansion contains 2i. (For example, the expansion
of 11 contains 23 but not 22, so 11 ∈ B3 but 11 ̸∈ B2.) As usual, we put B∗ = B \ (B0 ∪ B1 ∪ B2 ∪ B3).
What is |B∗|? (The answer is easy.) Check that the IEP gives the same as the easy answer.

Solution: The set B∗ consists of those k ∈ B such that the binary expansion of k does not contain 20, 21,
22 or 23, which is only possible for k = 0. We thus have B∗ = {0} and |B∗| = 1.

On the other hand, the IEP gives

|B∗| =
∑

I⊆{0,1,2,3}

(−1)|I||BI |.

Now consider a subset I ⊆ {0, 1, 2, 3}, with |I| = r say. For a number k to lie in BI , it must have a 1 in the
positions corresponding to the elements of I, but in the other 4 − r positions it can have either a 0 or a 1.
This gives |BI | = 24−r. The number of possible choices of I with |I| = r is

(
4
r

)
. If we use this to rewrite the

IEP formula and then use the binomial expansion we get

|B∗| =
4∑

r=0

(
4

r

)
(−1)r24−r = (−1 + 2)4 = 14 = 1,

which agrees with our previous approach.
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