
MAS334 COMBINATORICS — PROBLEM SHEET 2

Please hand in exercises 2.1 and 2.5 by the end of Week 4.

Exercise 2.1. Consider the following boards:

(a) (b) (c)

(The black squares do not count as part of the boards.) Which of these can be covered by disjoint dominos?

Exercise 2.2. On an n× n board there are n2 chess pieces, one on each square. I wish to move each piece
to an adjacent square (in the same row or column) so that after all the n2 pieces have moved there is still
one piece on each square.

(a) Show that this can be done if n is even. (Give explicit instructions for where to move each piece,
not just an abstract argument to suggest that it is possible.)

(b) By a colourful argument show that it cannot be done if n is odd. (It is not enough to try some plau-
sible approach and show that that approach fails. There might be some complicated and nonobvious
pattern of movement that does the job. You need to give a proper proof to show that that cannot
happen.)

Exercise 2.3. Consider the following networks of nodes and bridges:

(a) (b)

In each case, say whether it is possible to have a circular tour that crosses each bridge precisely once, and
also whether it is possible to have a non-circular tour that crosses each bridge precisely once.

Exercise 2.4. Given any positive integer n ≥ 1, if we divide by two repeatedly we will eventually get to an
odd number. Thus, we have n = 2tm for some t ≥ 0 and some odd number m. We call m the odd part of n.
For example, 60 = 22 × 15, so the odd part of 60 is 15.
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Show that, given any n + 1 different positive integers less than or equal to 2n, there will exist two with
the same odd part. Deduce that one of those numbers is a multiple of the other.

Exercise 2.5. Let n be a positive integer. By considering numbers of the form 1, 11, 111, . . . and their
remainders modulo n, show that there exists a number of the form 11 . . . 10 . . . 00 which is a multiple of n.

Exercise 2.6. Prove that there exist two different powers of 7 whose difference is divisible by 1000.

Exercise 2.7. Let a1, . . . , a50 be points in the unit square [0, 1]2. Show that there are indices i < j such
that the distance from ai to aj is less than 0.21. (Hint: divide the square into small boxes and apply the
pigeonhole principle.)

Exercise 2.8. Using the pigeonhole principle, explain why there is no compression algorithm that can
compress every possible 8MB file down to 1MB in such a way that it can be uncompressed without errors.

Exercise 2.9. Lemma 5.4 says that for a finite, nonempty set I we have
∑

J⊆I(−1)|J| = 0. Check this

explicitly in the case I = {a, b, c}.

Exercise 2.10. Suppose that we choose a number k ∈ {0, 1, . . . , 999} at random. What is the probability
that k and 1000 are coprime?

Exercise 2.11. Suppose we have a set B with subsets B1, . . . , B4 such that B = B1 ∪ · · · ∪ B4 and |B| is
odd. Suppose there are numbers n1, n2, n3 such that

• |Bi| = n1 for all i
• |Bij | = n2 for all i < j
• |Bijk| = n3 for all i < j < k.

Prove that |B1234| is odd.

Exercise 2.12. Consider the set X = [2, 1000] = {2, 3, 4, . . . , 1000}. For each prime p, let Xp be the
subset of numbers in X that are divisible by p. As in the Inclusion-Exclusion Principle, we write Xp,q,r for
Xp ∩Xq ∩Xr, and so on. We will investigate the sizes of some sets related to these. It will be helpful to use
the notation

⌊x⌋ = largest integer n such that n ≤ x

(so for example ⌊7.01⌋ = ⌊7.89⌋ = ⌊7.77⌋ = 7).

(a) Show that |X2| = 5000 and |X2,3| = 1666.
(b) Give a formula for |Xp,q,r|.
(c) Using the IEP, show that there are precisely 7334 numbers in X that are divisible by at least one of

the primes 2, 3 and 5. Of these 7334 numbers, show that 3 are prime and 7331 are not prime.
(d) Give an upper bound for the number of primes in X. How would this bound change if we tested for

divisibility by 7 as well as 2, 3 and 5?

Exercise 2.13. Let A and B be finite sets, with |A| = m and |B| = n say. We will assume that m ≥ n. Let
F be the set of all functions from A to B. For each b ∈ B, let Fb ⊆ F be the subset of functions f : A → B
such that b ̸∈ f(A). We also let E ⊆ F be the set of surjective functions.

(a) Explain why |F | = nm.
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(b) Show that |Fb| = (n− 1)m for all b ∈ B.
(c) Show that for b ̸= c in B we have |Fb ∩ Fc| = (n− 2)m.
(d) Give a formula for E in terms of the sets Fb.
(e) By applying the negative IEP to your formula in (d), prove that

|E| =
n∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Exercise 2.14.

(a) Explain briefly why there are
(
n−1
k−1

)
positive integer solutions of the equation

x1 + x2 + · · ·+ xk = n.

(b) Use the Inclusion/Exclusion Principle to find the number of positive integer solutions of the equation

x1 + x2 + x3 = 20

satisfying the conditions x1 ≤ 5, x2 ≤ 10 and x3 ≤ 15.

Exercise 2.15. Let P be the set of permutations of {1, . . . , 9}. Let Q be the subset of permutations σ ∈ P
satisfying σ(i) + i ≤ 10 for all i. Let R be the subset of permutations σ ∈ P satisfying σ(i) = i (mod 3) for
all i. Find |P |, |Q| and |R|.

Exercise 2.16. Put B = {1, . . . , n} and Bi = {1, . . . , i} ⊆ B for i = 1, . . . , n. Put B′ = B1 ∪ · · · ∪ Bn.
What is |B′|? (The answer is obvious.) Check that the IEP gives the same as the obvious answer. (Hint:
group the nonempty subsets I ⊆ {1, . . . , n} according to their minimum elements.)

Exercise 2.17. Put B = {0, 1, . . . , 15}. Any number k ∈ B can be expressed in base 2 with four binary
digits, for example

11 = 8 + 2 + 1 = 1.23 + 0.22 + 1.21 + 1.20 = 10112.

Let Bi be the subset of those k ∈ B such that the binary expansion contains 2i. (For example, the expansion
of 11 contains 23 but not 22, so 11 ∈ B3 but 11 ̸∈ B2.) As usual, we put B∗ = B \ (B0 ∪ B1 ∪ B2 ∪ B3).
What is |B∗|? (The answer is easy.) Check that the IEP gives the same as the easy answer.
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