Combinatorics Exam Solutions 2019-20

(1) Put $N=\{0,1,2,3,4,5,6,7,8,9,10,11\}$, and consider subsets $U \subseteq N$.
(a) How many subsets are there in total? (1 marks)
(b) How many subsets U are there such that U contains at least two odd numbers? (3 marks)
(c) How many subsets U are there such that $|U|$ is divisible by 4? (2 marks)
(d) Say that $U \subseteq N$ is an interval if $|U|>1$, and whenever $i<j<k$ with $i, k \in U$ we also have $j \in U$. How many intervals are there? ($\mathbf{3}$ marks)

Solution: Part (a) is standard, the rest is similar to problems that have been seen.

(a) The total number of subsets is $2^{12}=4096$. [1]
(b) Let N_{0} be the subset of even numbers in N, and let N_{1} be the subset of odd numbers, so $\left|N_{0}\right|=\left|N_{1}\right|=6$. We are looking for subsets of the form $U=U_{0} \cup U_{1}$, where $U_{i} \subseteq N_{i}$ and $\left|U_{1}\right| \geq 2$. The number of possibilities for U_{0} is $2^{6}=64$. The number of possibilities for U_{1} is

$$
\binom{6}{2}+\binom{6}{3}+\cdots+\binom{6}{6}=2^{6}-\binom{6}{0}-\binom{6}{1}=64-1-6=57 .
$$

Thus, the number of possibilities for U is $64 \times 57=3648$. [3]
(c) The number is

$$
\binom{12}{0}+\binom{12}{4}+\binom{12}{8}+\binom{12}{12}=1+495+495+1=992 .[2]
$$

(d) For any subset $\{i, k\} \subset N$ of size 2 , we have an interval $\{i, i+1, \ldots, k\}$. This gives a bijection between subsets of size 2 and intervals, so the number of intervals is $\binom{12}{2}=66$. [3]
(2) Consider the equation $x_{1}+x_{2}+x_{3}+x_{4}=18$, where the variables x_{i} are required to be integers.
(a) Find the number of solutions where $i \leq x_{i}$ for all i. (2 marks)
(b) Find the number of solutions where $i \leq x_{i}$ for all i and also $7 \leq x_{3}$. (1 marks)
(c) Find the number of solutions where $i \leq x_{i}$ for all i and also $7 \leq x_{3}$ and $6 \leq x_{4}$. (1 marks)
(d) Find the number of solutions where $i \leq x_{i}<10-i$ for all i. (You will need the Inclusion-Exclusion Principle for this, together with parts (b) and (c) and some similar calculations.) (8 marks)

Solution: Parts (a), (b) and (c) are very standard. The method used for (d) has also been seen. We first rewrite everything in terms of the variables $w_{i}=x_{i}-i$. The equation becomes $w_{1}+w_{2}+w_{3}+w_{4}=18-(1+2+3+4)=8$.
(a) Let B denote the set of solutions for part (a). Here we merely require that $w_{i} \geq 0$ for all i, and by the standard method, the number of solutions is

$$
|B|=\binom{8+3}{3}=\frac{11 \times 10 \times 9}{3 \times 2 \times 1}=165 .[2]
$$

(b) Here we can write $x_{3}=7+v_{3}$, and $x_{i}=i+w_{i}$ for $i \neq 3$. The equation is

$$
\left(w_{1}+1\right)+\left(w_{2}+2\right)+\left(v_{3}+7\right)+\left(w_{4}+4\right)=18
$$

or equivalently $w_{1}+w_{2}+v_{3}+w_{4}=4$; the number of solutions is $\binom{4+3}{3}=35$ [1].
(c) Here we can write $x_{3}=7+v_{3}$ and $x_{4}=6+v_{4}$ and $x_{i}=i+w_{i}$ for $i \neq 3,4$. The equation is

$$
\left(w_{1}+1\right)+\left(w_{2}+2\right)+\left(v_{3}+7\right)+\left(v_{4}+6\right)=18
$$

or equivalently $w_{1}+w_{2}+v_{3}+v_{4}=2$; the number of solutions is $\binom{2+3}{3}=10[1]$.
(d) Now let $B_{i} \subseteq B$ be the subset of solutions where $x_{i} \geq 10-i$, or equivalently $w_{i} \geq 10-2 i$. The set of solutions for (d) is then $B^{*}=B \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup B_{4}\right)$, and the IEP gives $\left|B^{*}\right|=\sum_{I}(-1)^{|I|}\left|B_{I}\right|$ [2]. (Here I runs over subsets of $\{1,2,3,4\}$, and $B_{I}=\bigcap_{i \in I} B_{i}$.) In principle, this sum has 16 terms, but many of them are zero. Parts (a), (b) and (c) tell us that $\left|B_{\emptyset}\right|=|B|=165$ and $\left|B_{3}\right|=35$ and $\left|B_{34}\right|=10$. Using the same method as in (b), we get

$$
\left|B_{1}\right|=\binom{0+3}{3}=1 \quad\left|B_{2}\right|=\binom{2+3}{3}=10 \quad\left|B_{3}\right|=\binom{4+3}{3}=35 \quad\left|B_{4}\right|=\binom{6+3}{3}=84 .[2]
$$

Using the same method as in (c), we get

$$
\left|B_{24}\right|=\binom{0+3}{3}=1 \quad\left|B_{34}\right|=\binom{2+3}{3}=10 .[2]
$$

The same method also shows that B_{12} is the set of nonnegative solutions for $\left(v_{1}+9\right)+\left(v_{2}+8\right)+\left(w_{3}+3\right)+\left(w_{4}+4\right)=$ 18 , or equivalently $v_{1}+v_{2}+w_{3}+w_{4}=-6$; this is clearly empty. In fact, we find that all the remaining sets B_{I} are empty. [1]This gives

$$
\begin{aligned}
\left|B^{*}\right| & =|B|-\left|B_{1}\right|-\left|B_{2}\right|-\left|B_{3}\right|-\left|B_{4}\right|+\left|B_{24}\right|+\left|B_{34}\right| \\
& =165-1-10-35-84+1+10=46 .[1]
\end{aligned}
$$

(3) Let P be the set of all prime numbers p such that $100 \leq p \leq 1000$. You can assume that $|P|=143$.
(a) Can any of the primes in P be equal to $8(\bmod 12)$? Can any of them be equal to $9(\bmod 12)$? ($\mathbf{3}$ marks)
(b) Show that there is a subset $Q \subseteq P$ such that $|Q|=36$ and all the primes in Q are congruent to each other modulo 12. (5 marks)

Solution: Unseen, although other pigeonhole arguments for congruence have been seen.

For $0 \leq k<12$ put $P_{k}=\{p \in P \mid p=k(\bmod 12)\}$, so P is the disjoint union of the sets P_{k}. Part (a) asks about the sets P_{8} and P_{9}. If $p \in P_{8}$ then $p=8+12 m$ for some m, so p is even, but the only even prime is 2 , and $2 \notin P$ because $2<100$, so this is impossible. This means that $P_{8}=\emptyset$ [2]. Similarly, if $p \in P_{9}$ then $p=9+12 m$ for some m, so p is divisible by 3 . The only prime that is divisible by 3 is 3 itself, and $3 \notin P$ because $3<100$, so this is impossible. This means that $P_{9}=\emptyset[1]$. In the same way, we see that $P_{0}=P_{2}=P_{3}=P_{4}=P_{6}=P_{8}=P_{9}=P_{10}=\emptyset$, so only the sets P_{1}, P_{5}, P_{7} and P_{11} can be nonempty [1]. It follows that $\left|P_{1}\right|+\left|P_{5}\right|+\left|P_{7}\right|+\left|P_{11}\right|=|P|=143$ [1]. If all of these sets had $\left|P_{k}\right| \leq 35$ then we would have $\left|P_{1}\right|+\left|P_{5}\right|+\left|P_{7}\right|+\left|P_{11}\right| \leq 4 \times 35=140$, which is false [2]. Thus, we can choose k with $\left|P_{k}\right| \geq 36$. We can then choose a subset $Q \subseteq P_{k}$ with $|Q|=36$. All elements of Q are congruent to k $(\bmod 12)$, so they are all congruent to each other modulo 12. [1]
(4) Recall that F_{n} denotes the $n \times n$ board with all squares white. Let B be a copy of F_{5} with a single square blocked off.
(a) What is the relationship between $r_{B}(x), r_{F_{5}}(x)$ and $r_{F_{4}}(x)$? (2 marks)
(b) Use this to calculate $r_{B}(x)$. (4 marks)

Solution: It is very standard to use the blocking and stripping relation forwards. The idea of using it backwards is unseen.
(a) The board B is obtained from F_{5} by blocking one square, and the corresponding stripping operation converts F_{5} to F_{4}, so we have the standard blocking and stripping relation $r_{F_{5}}(x)=r_{B}(x)+x r_{F_{4}}(x)$. [2]
(b) This gives $r_{B}(x)=r_{F_{5}}(x)-x r_{F_{4}}(x)$. It is also standard that

$$
r_{F_{n}}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} k!x^{k} \cdot[1]
$$

Using this, we get

$$
\begin{aligned}
r_{F_{5}}(x) & =1+\left(5^{2} \times 1\right) x+\left(10^{2} \times 2\right) x^{2}+\left(10^{2} \times 6\right) x^{3}+\left(5^{2} \times 24\right) x^{4}+\left(1^{2} \times 120\right) x^{5} \\
& =1+25 x+200 x^{2}+600 x^{3}+600 x^{4}+120 x^{5}[1] \\
r_{F_{4}}(x) & =1+\left(4^{2} \times 1\right) x+\left(6^{2} \times 2\right) x^{2}+\left(4^{2} \times 6\right) x^{3}+\left(1^{2} \times 24\right) x^{4} \\
& =1+16 x+72 x^{2}+96 x^{3}+24 x^{4}[1] \\
r_{B}(x) & =1+24 x+184 x^{2}+528 x^{3}+504 x^{4}+96 x^{5} \cdot[1]
\end{aligned}
$$

(5) Consider the following picture:

(Note that there are five curved lines, each one joining a vertex of the outer pentagon to the middle of the opposite edge.)

From this we can try to construct a block design. We have a block for each filled blue circle, and a variety for each unfilled red circle. A given variety lies in a given block iff there is a line joining the corresponding circles.
(a) Explain briefly why this does indeed give a block design, and find the corresponding parameters (v, b, r, k, λ). (5 marks)
(b) Write down the standard equations relating these parameters, and check that they are satisfied in this case. (2 marks)

Solution: This is unseen, but straightforward.

- v must be the number of varieties, or in other words the number of unfilled red circles, which is 6 . [1]
- b must be the number of blocks, or in other words the number of filled blue circles, which is 10 . [1]
- For this to be a block design, there must be a number r such that every variety lies in precisely r blocks, or in other words, every red circle is connected to precisely r blue circles. By inspection, every red circle is connected to precisely 5 blue circles, so $r=5$. [1]
- For this to be a block design, there must be a number k such that every block contains precisely k varieties, or in other words, every blue circle is connected to precisely k red circles. By inspection, every blue circle is connected to precisely 3 blue circles, so $k=3$. [1]
- For this to be a block design, there must be a number λ such that every pair of distinct varieties lies in precisely λ blocks. In other words, for every pair of red circles, there must be precisely λ blue circles that are connected to both of them. Close inspection shows that this is satisfied for $\lambda=2$. [1]
- The standard equations are shown on the left below. On the right, we have filled in the values $(v, b, r, k, \lambda)=$ $(6,10,5,3,2)$. It is clear that all the resulting equations are satisfied. [2]

$$
\begin{aligned}
b k & =r v \\
b k(k-1) & =\lambda v(v-1) \\
r(k-1) & =\lambda(v-1)
\end{aligned}
$$

$$
\begin{aligned}
10 \times 3 & =6 \times 5 \\
10 \times 3 \times 2 & =2 \times 6 \times 5 \\
5 \times 2 & =2 \times 5 .
\end{aligned}
$$

(6) Suppose we need to recruit people as follows:
(1) 1 rocket scientist
(2) 10 brain surgeons
(3) 100 hamburger chefs.

We have 111 candidates in total; let C_{i} be the set of candidates who are qualified for job i. It is given that

$$
\left|C_{1}\right|=3 \quad\left|C_{2}\right|=11 \quad\left|C_{3}\right|=101 \quad\left|C_{1} \cap C_{2}\right|=\left|C_{1} \cap C_{3}\right|=\left|C_{2} \cap C_{3}\right|=\left|C_{1} \cap C_{2} \cap C_{3}\right|=2 .
$$

Can the job allocation problem be solved? Justify your answer. (8 marks)
Solution: Put $T=C_{1} \cap C_{2} \cap C_{3}$ (the set of multitalented people who can do all three jobs) and $C_{i}^{\prime}=C_{i} \backslash T$. It is given that $|T|=2$. We also have $\left|C_{i}^{\prime}\right|=\left|C_{i}\right|-|T|=\left|C_{i}\right|-2$, so $\left|C_{1}^{\prime}\right|=1$ and $\left|C_{2}^{\prime}\right|=9$ and $\left|C_{3}^{\prime}\right|=99$ [3].

Note that the sets $C_{1} \cap C_{2}, C_{1} \cap C_{3}$ and $C_{2} \cap C_{3}$ all contain T and have size 2 so they are equal to T. In other words, anyone who can do two jobs can in fact do all three [2]. It follows that the sets $C_{1}^{\prime}, C_{2}^{\prime}$ and C_{3}^{\prime} are disjoint [1]. We can thus allocate everyone in C_{i}^{\prime} to do job i, allocate one multitalented person to be a brain surgeon, and allocate the other multitalented person to be a hamburger chef; this solves the allocation problem [2].

As an alternative, we can verify the Hall plausibility conditions. We need to show that

$$
\begin{aligned}
\left|C_{1}\right| & \geq 1 & \left|C_{2}\right| & \geq 10 \\
\left|C_{1} \cup C_{2}\right| & \geq 11 & \left|C_{1} \cup C_{3}\right| & \geq 101 \\
\left|C_{1} \cup C_{2} \cup C_{3}\right| & \geq 111 . & & \left|C_{2} \cup C_{3}\right|
\end{aligned}
$$

The inequalities on the first row are immediate from the given data. For the second row, the IEP gives $\left|C_{i} \cup C_{j}\right|=$ $\left|C_{i}\right|+\left|C_{j}\right|-\left|C_{i} \cap C_{j}\right|$. It is given that $\left|C_{i} \cap C_{j}\right|=2$ for all $i \neq j$, so $\left|C_{i} \cup C_{j}\right|=\left|C_{i}\right|+\left|C_{j}\right|-2$. This gives

$$
\left|C_{1} \cup C_{2}\right|=12 \quad\left|C_{1} \cup C_{3}\right|=102 \quad\left|C_{2} \cup C_{3}\right|=110,
$$

so the inequalities in the second row are satisfied. Similarly, we have

$$
\left|C_{1} \cup C_{2} \cup C_{3}\right|=3+11+101-2-2-2+2=111,
$$

so the final inequality is also satisfied. It follows by the team version of Hall's Theorem that the allocation problem can be solved.

