
Combinatorics Exam Solutions 2019-20

(1) Put N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, and consider subsets U ⊆ N .

(a) How many subsets are there in total? (1 marks)

(b) How many subsets U are there such that U contains at least two odd numbers? (3 marks)

(c) How many subsets U are there such that |U | is divisible by 4? (2 marks)

(d) Say that U ⊆ N is an interval if |U | > 1, and whenever i < j < k with i, k ∈ U we also have j ∈ U . How many
intervals are there? (3 marks)

Solution: Part (a) is standard, the rest is similar to problems that have been seen.

(a) The total number of subsets is 212 = 4096. [1]

(b) Let N0 be the subset of even numbers in N , and let N1 be the subset of odd numbers, so |N0| = |N1| = 6. We
are looking for subsets of the form U = U0 ∪U1, where Ui ⊆ Ni and |U1| ≥ 2. The number of possibilities for U0

is 26 = 64. The number of possibilities for U1 is(
6

2

)
+

(
6

3

)
+ · · ·+

(
6

6

)
= 26 −

(
6

0

)
−
(

6

1

)
= 64− 1− 6 = 57.

Thus, the number of possibilities for U is 64× 57 = 3648. [3]

(c) The number is (
12

0

)
+

(
12

4

)
+

(
12

8

)
+

(
12

12

)
= 1 + 495 + 495 + 1 = 992.[2]

(d) For any subset {i, k} ⊂ N of size 2, we have an interval {i, i+ 1, . . . , k}. This gives a bijection between subsets
of size 2 and intervals, so the number of intervals is

(
12
2

)
= 66. [3]

(2) Consider the equation x1 + x2 + x3 + x4 = 18, where the variables xi are required to be integers.

(a) Find the number of solutions where i ≤ xi for all i. (2 marks)

(b) Find the number of solutions where i ≤ xi for all i and also 7 ≤ x3. (1 marks)

(c) Find the number of solutions where i ≤ xi for all i and also 7 ≤ x3 and 6 ≤ x4. (1 marks)

(d) Find the number of solutions where i ≤ xi < 10 − i for all i. (You will need the Inclusion-Exclusion Principle
for this, together with parts (b) and (c) and some similar calculations.) (8 marks)

Solution: Parts (a), (b) and (c) are very standard. The method used for (d) has also been seen. We first
rewrite everything in terms of the variables wi = xi−i. The equation becomes w1+w2+w3+w4 = 18−(1+2+3+4) = 8.

(a) Let B denote the set of solutions for part (a). Here we merely require that wi ≥ 0 for all i, and by the standard
method, the number of solutions is

|B| =
(

8 + 3

3

)
=

11× 10× 9

3× 2× 1
= 165.[2]

(b) Here we can write x3 = 7 + v3, and xi = i+ wi for i 6= 3. The equation is

(w1 + 1) + (w2 + 2) + (v3 + 7) + (w4 + 4) = 18,

or equivalently w1 + w2 + v3 + w4 = 4; the number of solutions is
(
4+3
3

)
= 35 [1].
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(c) Here we can write x3 = 7 + v3 and x4 = 6 + v4 and xi = i+ wi for i 6= 3, 4. The equation is

(w1 + 1) + (w2 + 2) + (v3 + 7) + (v4 + 6) = 18,

or equivalently w1 + w2 + v3 + v4 = 2; the number of solutions is
(
2+3
3

)
= 10 [1].

(d) Now let Bi ⊆ B be the subset of solutions where xi ≥ 10− i, or equivalently wi ≥ 10− 2i. The set of solutions
for (d) is then B∗ = B \ (B1 ∪ B2 ∪ B3 ∪ B4), and the IEP gives |B∗| =

∑
I(−1)|I||BI | [2]. (Here I runs over

subsets of {1, 2, 3, 4}, and BI =
⋂

i∈I Bi.) In principle, this sum has 16 terms, but many of them are zero.
Parts (a), (b) and (c) tell us that |B∅| = |B| = 165 and |B3| = 35 and |B34| = 10. Using the same method as
in (b), we get

|B1| =
(

0 + 3

3

)
= 1 |B2| =

(
2 + 3

3

)
= 10 |B3| =

(
4 + 3

3

)
= 35 |B4| =

(
6 + 3

3

)
= 84.[2]

Using the same method as in (c), we get

|B24| =
(

0 + 3

3

)
= 1 |B34| =

(
2 + 3

3

)
= 10.[2]

The same method also shows that B12 is the set of nonnegative solutions for (v1+9)+(v2+8)+(w3+3)+(w4+4) =
18, or equivalently v1 + v2 +w3 +w4 = −6; this is clearly empty. In fact, we find that all the remaining sets BI

are empty. [1]This gives

|B∗| = |B| − |B1| − |B2| − |B3| − |B4|+ |B24|+ |B34|
= 165− 1− 10− 35− 84 + 1 + 10 = 46.[1]

(3) Let P be the set of all prime numbers p such that 100 ≤ p ≤ 1000. You can assume that |P | = 143.

(a) Can any of the primes in P be equal to 8 (mod 12)? Can any of them be equal to 9 (mod 12)? (3 marks)

(b) Show that there is a subset Q ⊆ P such that |Q| = 36 and all the primes in Q are congruent to each other
modulo 12. (5 marks)

Solution: Unseen, although other pigeonhole arguments for congruence have been seen.
For 0 ≤ k < 12 put Pk = {p ∈ P | p = k (mod 12)}, so P is the disjoint union of the sets Pk. Part (a) asks about

the sets P8 and P9. If p ∈ P8 then p = 8 + 12m for some m, so p is even, but the only even prime is 2, and 2 6∈ P
because 2 < 100, so this is impossible. This means that P8 = ∅ [2]. Similarly, if p ∈ P9 then p = 9 + 12m for some m,
so p is divisible by 3. The only prime that is divisible by 3 is 3 itself, and 3 6∈ P because 3 < 100, so this is impossible.
This means that P9 = ∅ [1]. In the same way, we see that P0 = P2 = P3 = P4 = P6 = P8 = P9 = P10 = ∅, so only
the sets P1, P5, P7 and P11 can be nonempty [1]. It follows that |P1| + |P5| + |P7| + |P11| = |P | = 143 [1]. If all of
these sets had |Pk| ≤ 35 then we would have |P1|+ |P5|+ |P7|+ |P11| ≤ 4× 35 = 140, which is false [2]. Thus, we can
choose k with |Pk| ≥ 36. We can then choose a subset Q ⊆ Pk with |Q| = 36. All elements of Q are congruent to k
(mod 12), so they are all congruent to each other modulo 12. [1]

(4) Recall that Fn denotes the n×n board with all squares white. Let B be a copy of F5 with a single square blocked
off.

(a) What is the relationship between rB(x), rF5
(x) and rF4

(x)? (2 marks)

(b) Use this to calculate rB(x). (4 marks)

Solution: It is very standard to use the blocking and stripping relation forwards. The idea of using it
backwards is unseen.

(a) The board B is obtained from F5 by blocking one square, and the corresponding stripping operation converts
F5 to F4, so we have the standard blocking and stripping relation rF5(x) = rB(x) + x rF4(x). [2]
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(b) This gives rB(x) = rF5
(x)− x rF4

(x). It is also standard that

rFn
(x) =

n∑
k=0

(
n

k

)2

k!xk.[1]

Using this, we get

rF5
(x) = 1 + (52 × 1)x+ (102 × 2)x2 + (102 × 6)x3 + (52 × 24)x4 + (12 × 120)x5

= 1 + 25x+ 200x2 + 600x3 + 600x4 + 120x5[1]

rF4
(x) = 1 + (42 × 1)x+ (62 × 2)x2 + (42 × 6)x3 + (12 × 24)x4

= 1 + 16x+ 72x2 + 96x3 + 24x4[1]

rB(x) = 1 + 24x+ 184x2 + 528x3 + 504x4 + 96x5.[1]

(5) Consider the following picture:

(Note that there are five curved lines, each one joining a vertex of the outer pentagon to the middle of the opposite
edge.)

From this we can try to construct a block design. We have a block for each filled blue circle, and a variety for each
unfilled red circle. A given variety lies in a given block iff there is a line joining the corresponding circles.

(a) Explain briefly why this does indeed give a block design, and find the corresponding parameters (v, b, r, k, λ). (5
marks)

(b) Write down the standard equations relating these parameters, and check that they are satisfied in this case. (2
marks)

Solution: This is unseen, but straightforward.

� v must be the number of varieties, or in other words the number of unfilled red circles, which is 6. [1]

� b must be the number of blocks, or in other words the number of filled blue circles, which is 10. [1]

� For this to be a block design, there must be a number r such that every variety lies in precisely r blocks, or in
other words, every red circle is connected to precisely r blue circles. By inspection, every red circle is connected
to precisely 5 blue circles, so r = 5. [1]
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� For this to be a block design, there must be a number k such that every block contains precisely k varieties,
or in other words, every blue circle is connected to precisely k red circles. By inspection, every blue circle is
connected to precisely 3 blue circles, so k = 3. [1]

� For this to be a block design, there must be a number λ such that every pair of distinct varieties lies in precisely
λ blocks. In other words, for every pair of red circles, there must be precisely λ blue circles that are connected
to both of them. Close inspection shows that this is satisfied for λ = 2. [1]

� The standard equations are shown on the left below. On the right, we have filled in the values (v, b, r, k, λ) =
(6, 10, 5, 3, 2). It is clear that all the resulting equations are satisfied. [2]

bk = rv 10× 3 = 6× 5

bk(k − 1) = λv(v − 1) 10× 3× 2 = 2× 6× 5

r(k − 1) = λ(v − 1) 5× 2 = 2× 5.

(6) Suppose we need to recruit people as follows:

(1) 1 rocket scientist

(2) 10 brain surgeons

(3) 100 hamburger chefs.

We have 111 candidates in total; let Ci be the set of candidates who are qualified for job i. It is given that

|C1| = 3 |C2| = 11 |C3| = 101 |C1 ∩ C2| = |C1 ∩ C3| = |C2 ∩ C3| = |C1 ∩ C2 ∩ C3| = 2.

Can the job allocation problem be solved? Justify your answer. (8 marks)

Solution: Put T = C1 ∩ C2 ∩ C3 (the set of multitalented people who can do all three jobs) and C ′i = Ci \ T . It is
given that |T | = 2. We also have |C ′i| = |Ci| − |T | = |Ci| − 2, so |C ′1| = 1 and |C ′2| = 9 and |C ′3| = 99 [3].

Note that the sets C1 ∩ C2, C1 ∩ C3 and C2 ∩ C3 all contain T and have size 2 so they are equal to T . In other
words, anyone who can do two jobs can in fact do all three [2]. It follows that the sets C ′1, C ′2 and C ′3 are disjoint [1].
We can thus allocate everyone in C ′i to do job i, allocate one multitalented person to be a brain surgeon, and allocate
the other multitalented person to be a hamburger chef; this solves the allocation problem [2].

C1 C2

C3

2

0

0 0

1 9

99

As an alternative, we can verify the Hall plausibility conditions. We need to show that

|C1| ≥ 1 |C2| ≥ 10 |C3| ≥ 100

|C1 ∪ C2| ≥ 11 |C1 ∪ C3| ≥ 101 |C2 ∪ C3| ≥ 110

|C1 ∪ C2 ∪ C3| ≥ 111.

The inequalities on the first row are immediate from the given data. For the second row, the IEP gives |Ci ∪ Cj | =
|Ci|+ |Cj | − |Ci ∩ Cj |. It is given that |Ci ∩ Cj | = 2 for all i 6= j, so |Ci ∪ Cj | = |Ci|+ |Cj | − 2. This gives

|C1 ∪ C2| = 12 |C1 ∪ C3| = 102 |C2 ∪ C3| = 110,

so the inequalities in the second row are satisfied. Similarly, we have

|C1 ∪ C2 ∪ C3| = 3 + 11 + 101− 2− 2− 2 + 2 = 111,

so the final inequality is also satisfied. It follows by the team version of Hall’s Theorem that the allocation problem
can be solved.
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