
MAS334 COMBINATORICS — AUTUMN SEMESTER 2016-2017

EXAM SOLUTIONS AND MARK SCHEME

SARAH WHITEHOUSE

Solution to Question 1

(ia) (bookwork)

There are
(
n−1
k−1
)

solutions. (1 Mark)
This can be seen by noting that the solutions are in bijection with the ways

of inserting k − 1 dividers into the n− 1 spaces between n items in a line.
(2 Marks)

(ib) (unseen, similar to seen problem)
Let y1 = y′1 + 1, y2 = y′2 + 2, y3 = y′3 + 3 and y4 = y′4 + 4. (2 Marks)
Then the required solutions are in bijection with positive integer solutions to

y′1 + y′2 + y′3 + y′4 = 37− (1 + 2 + 3 + 4) = 27, (2 Marks)

By part (a), the number of solutions is
(
26
3

)
= 2600. (1 Mark)

(ii) (unseen, similar to seen problems)

(a) There are
(
6
2

)(
3
1

)
= 15.3 = 45 such routes. (2 Marks)

(b)
(
9
3

)
− 45 = 84− 45 = 39. (2 Marks)

(c)

(
m+ n

n

)
−
(
i+ j

i

)(
m+ n− i− j

m− i

)
.

(3 Marks)
(iii) (unseen, similar to seen problems)

(a) On the one hand, there are
(
n+1
a+b+1

)
ways to choose a+ b+ 1 numbers from

the set {0, 1, . . . , n}. (1 Mark)
On the other hand, we consider the number k in position a+ 1 when we write

our chosen a+ b+ 1 numbers in increasing order. (1 Mark)
Then the first a of the chosen numbers are chosen from {0, 1, . . . , k − 1} and

the last b from {k + 1, . . . , n− 1, n}. This can be done in
(
k
a

)(
n−k
b

)
ways. Thus

the total number of ways is
∑n

k=0

(
k
a

)(
n−k
b

)
. (3 Marks)

Thus we have the required identity. (1 Mark)
1
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(b) Using (a) twice,
n∑
j=0

n∑
k=0

(
j

a

)(
k

b

)(
n− j − k

c

)
=

n∑
k=0

n∑
j=0

(
j

a

)(
(n− k)− j

c

)(
k

b

)

=

n∑
k=0

(
n+ 1− k
a+ c+ 1

)(
k

b

)
(2 Marks)

=
n+1∑
k=0

(
n+ 1− k
a+ c+ 1

)(
k

b

)
=

(
n+ 2

a+ b+ c+ 2

)
. (2 Marks)

[Alternative: Counting argument, as in part (a): choose a+b+c+2 numbers
from the set {0, 1, . . . , n + 1} and consider the number j in position a + 1 and
the number k such that j + k + 1 is in position a + b + 2 when we write our
chosen a+ b+ c+ 2 numbers in increasing order. Then the first a of the chosen
numbers are chosen from {0, 1, . . . , j− 1}, the next b from {j+ 1, . . . , j+ k} and
the final c from {j + k + 2, . . . , n+ 1}. ]
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Solution to Question 2

(ia) (unseen, similar to seen problems)
This is possible if and only if m or n is even. (1 Mark)

If n is even, fill each row completely and so the whole board. If m is even, fill
each column completely and so the whole board. (2 Marks)
If both m and n are odd, the total number of squares mn is also odd, but
dominoes cover an even number of squares so this is impossible. (1 Mark)

(ib) (unseen, similar to seen problems)
Consider shading the squares alternately black and white. (1 Mark)
For the whole rectangle, we have the same number of black and white squares,

because we have the same number in each column. When we remove the corners,
we remove two squares of the same colour, so leaving different numbers of black
and white squares. Since each domino covers a square of each colour, it is
impossible to cover the modified board. (3 Marks)

(iiia) (unseen, standard problem)
Label PHs 0, 1, 2, . . . , 123456788 corresponding to the possible remainders on

division by 123456789. (2 Marks)
Assign the first 123456790 powers of 17 to the PH corresponding to their

remainder on division by 123456789. (1 Mark)
Since there are more items than PHs, by the PHP there are two in the same PH,
that is two powers of 17 with the same remainder on division by 123456789.

(1 Mark)
The difference between these two powers of 17 is divisible by 123456789.

(1 Mark)
(iiib) (unseen, elementary)

Suppose instead that each box contains at most bn/kc items. Then the total
number of items is at most kbn/kc ≤ kn/k = n, contradicting that we had n+ 1
items in total. (3 Marks)

(iva) (bookwork) Suppose we have a finite set of items and properties 1, 2, 3, . . . , n.
LetN(i1, i2, . . . , ir) be the number of items which have the properties i1, i2, . . . , ir
(and maybe others). Then the number of items with at least one of the properties
is

N(1) +N(2) +N(3) + · · ·+N(n)

−N(1, 2)−N(1, 3)− · · · −N(n− 1, n)

+N(1, 2, 3) +N(1, 2, 4) + · · ·
−N(1, 2, 3, 4)− · · ·

...

+ (−1)n−1N(1, 2, 3, . . . , n).

(3 Marks)
ivb) (unseen, similar to homework problems)

Let P1, P2, P3 be the property that a permutation fixes 8, fixes 9, fixes 10
respectively. (1 Mark)
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We have N(i) = 9! for i = 1, 2, 3, N(i, j) = 8! for all i, j, N(i, j, k) = 7! for all
i, j, k. (2 Marks)

We want the number of items with at least one of the properties. (1 Mark)
By the Inclusion/Exclusion Principle, this is:

3 · 9!− 3 · 8! + 7! = 972720. (2 Marks)
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Solution to Question 3

(i) (unseen, standard)
There are many ways of calculating, using Theorem 43 (select a square) and

Theorem 46 (disjoint boards) from the course. The obvious one for this example
is to select the third square on the second row down, to obtain disjoint boards
at the next stage.

We get:
rB(x) = rC(x) + xrD(x),

where C consists of two disjoint boards, a full 2× 1 and a 2× 3 board with one
corner square deleted and D consists of disjoint full 1× 1 and 2× 2 boards.

(3 Marks)
So

rB(x) = (1 + 2x)(1 + 5x+ 4x2) + x(1 + x)(1 + 4x+ 2x2)

= 1 + 8x+ 19x2 + 14x3 + 2x4 . (3 Marks)

[Alternative: Direct counting by hand will be given full marks if the correct
answer is obtained (even without justification); partial marks may be obtained
for a partially correct answer depending on the explanation given for the counting
procedure adopted. ]

(iii) (m = n = 4 case done in lectures)
Fix 1 ≤ k ≤ n and consider the number of ways of placing k non-challenging

rooks on the given board. There are
(
m
k

)
ways to choose k columns for the k

rooks and
(
n
k

)
ways to choose k rows for the k rooks. (2 Marks)

Within the chosen columns and rows, there are k possible positions for the
rook on the first row, then k − 1 on the second row and k − 2 on the third row
and so on. (2 Marks)

Altogether this gives us(
m

k

)(
n

k

)
k.(k − 1).(k − 2) . . . 1

ways to place k non-challenging rooks. So the rook polynomial is as claimed.
(1 Mark)

(iii) (unseen)
(a) Yes. This is the rook polynomial of any board made up of disjoint copies of a

full 1× 1 board and two full 2× 2 boards. (2 Marks)
(b) No. The coefficient of x is 4 and this is the number of unshaded squares. So

there are at most
(
4
2

)
= 6 ways to place two rooks. But the coefficient of x2

is 7 and this is the number of ways of placing 2 non-challenging rooks. So it’s
impossible. (2 Marks)

(iva) (unseen, standard)
The sum of the scores is

(
n
2

)
. And, for each r, the sum of the least r scores is∑r−1

i=0 i =
(
r
2

)
. So, by Landau’s Theorem, these are the scores of a tournament

of n players. (3 Marks)
[Alternatively, exhibit a suitable tournament: pi beats pj for i > j.]
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(ivb) (on problem sheet) The sum of the scores is nm = (2m + 1)m =
(
n
2

)
. For

1 ≤ r < n, the sum of any r scores is rm = r(n − 1)/2 ≥ r(r − 1)/2 =
(
r
2

)
. So,

by Landau’s Theorem, these are the scores of a tournament of n players.
(2 Marks)

(ivc) (unseen) For the first set of scores, combine a tournament A from the first part
with a tournament B from the second part, with all the A players beating all
the B players. Thus we add n = 2m + 1 to every A score, giving the required
scores. (2 Marks)

For the second set of scores, combine a tournament A from the first part with
a tournament B from the second part, with all the B players beating all the A
players. Thus we add n = 2m+ 1 to every B score, giving the required scores.

(2 Marks)
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Solution to Question 4

(i) (standard problem) We want to extend a p×q Latin rectangle to an n×n Latin
square, where p = 4, q = 4 and n = 6. This is possible iff L(i) ≥ 4 + 4 − 6 = 2
for 1 ≤ i ≤ 6, where L(i) denotes the number of occurrences of i in the given
rectangle. This happens iff x = 1. (2 Marks)
One extension is

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 1 6 2 3 5
5 6 1 3 2 4
6 5 2 1 4 3

 (4 Marks)

[Marking: 2 marks for any correct extension to 4 × 6 or 6 × 4; 2 marks for
any correct extension from there to 6× 6. Partial marks available for “partially
correct” extensions.]

(iia) (bookwork) Two n×n Latin squares L = (lij),M = (mij) are called orthogonal
if the pairs (lij ,mij) include all the possibilities (1, 1), (1, 2), . . . , (n, n).

(2 Marks)
(iib) (unseen problem; used on previous exams, last in 2013-14) Suppose

that (Ak)ij = (Ak)i′j′ and (Ah)ij = (Ah)i′j′ for k 6= h. (2 Marks)
Then ki+ j ≡ ki′ + j′ mod p and hi+ j ≡ hi′ + j′ mod p. (1 Mark)
Thus (k−h)i ≡ (k−h)i′ and since p does not divide k−h, this gives i ≡ i′ mod p.
Since 1 ≤ i, i′ ≤ p, it follows that i = i′. Then j ≡ j′ mod p and so j = j′.

(2 Marks)
So there are no duplicates among the pairs ((Ak)ij , (Ah)ij) and the squares Ak
and Ah are orthogonal. (1 Mark)

(iii) (bookwork) Let x be one of the varieties and assume x is in rx blocks. (1 Mark)
Consider all the blocks and count the number of pairs that involve x. (1 Mark)
Firstly, since x can be paired with k− 1 others in each of its blocks, this total is
rx(k − 1). (1 Mark)
On the other hand, there are v − 1 varieties apart from x. Each pair of x with
one other appears λ times in the design. So the total is λ(v − 1). (1 Mark)

So rx(k − 1) = λ(v − 1) and thus rx = λ(v−1)
k−1 . (1 Mark)

This is independent of x and we call it r. Now, since each variety occurs in r
blocks, the total number of entries in all blocks is vr. (1 Mark)
On the other hand, we have b blocks of k entries, so this is also bk. So vr = bk
and thus r = bk

v . (1 Mark)

(iv) (unseen)

M =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 (1 Mark)
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Thus

MTM =


3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

 (1 Mark)

By a theorem from the course, this form of MTM shows that these are the
blocks of a design, with r = 3 and λ = 2. (1 Mark)

The parameters of the design are (v, b, r, k, λ) = (4, 4, 3, 3, 2). (1 Mark)


