SCHOOL OF MATHEMATICS AND STATISTICS

Combinatorics

Autumn Semester 2016-17

2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets.
(i) (a) How many solutions are there of the equation

$$
y_{1}+y_{2}+\cdots+y_{k}=n,
$$

in which each y_{i} is a positive integer? Give a brief reason for your answer.
(3 marks)
(b) How many integer solutions are there to the equation

$$
y_{1}+y_{2}+y_{3}+y_{4}=37,
$$

such that $y_{1}>1, y_{2}>2, y_{3}>3$ and $y_{4}>4$?
(ii) Consider shortest routes from A to B along the lines of the grid below.

(a) How many such routes are there that pass through the point C ?
(2 marks)
(b) How many such routes are there that do not pass through the point C ?
(2 marks)
(c) Now consider an $m \times n$ grid with A bottom left at the point $(0,0)$ and B top right at the point (m, n). Let C be the grid point (i, j). Consider shortest routes from A to B along the lines of this grid. How many such routes do not pass through C ?
(3 marks)
(iii) (a) Let $a, b, n \geq 1$ with $a+b \leq n$. By considering choosing $a+b+1$ numbers from the set $\{0,1,2, \ldots, n\}$, and the possibilities for the number in position $a+1$ when the chosen numbers are listed in increasing order, show that

$$
\binom{n+1}{a+b+1}=\sum_{k=0}^{n}\binom{k}{a}\binom{n-k}{b} .
$$

(b) Hence, or otherwise, express

$$
\sum_{j=0}^{n} \sum_{k=0}^{n}\binom{j}{a}\binom{k}{b}\binom{n-j-k}{c}
$$

where $a+b+c \leq n$, as a single binomial coefficient.

2 (i) Consider a rectangle m squares wide and n squares high.
(a) For which m and n can this be completely covered by nonoverlapping dominoes (that is, by pieces which cover exactly two adjacent squares)? Justify your answer.
(4 marks)
(b) Now suppose that m and n are both even. Consider the shape resulting when two diagonally opposite corner squares are removed. Show that it is impossible to cover this completely by non-overlapping dominoes.
(ii) (a) Use the Pigeon-hole Principle to show that there are two powers of 17 whose difference is divisible by 123456789 .
(5 marks)
(b) Show that, if $n+1$ objects are placed in k boxes, then there must be at least one box that contains at least $\lfloor n / k\rfloor+1$ objects. (Here $\lfloor x\rfloor$ denotes the integer part of x.)
(iii) (a) State the Inclusion/Exclusion Principle.
(b) Use the Inclusion/Exclusion Principle to find the number of permutations of the numbers $1,2, \ldots, 10$ fixing at least one of 8,9 or 10 .
(6 marks)

3 (i) Calculate the rook polynomial of the (unshaded) board B :

(ii) Let $m \leq n$. Show that the rook polynomial of a full $m \times n$ board is

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n}{k} k!x^{k}
$$

(iii) Which of the following polynomials can be the rook polynomial of a board? Give reasons for your answers, including examples of appropriate boards where relevant.
(a) $(1+x)\left(1+4 x+2 x^{2}\right)^{2}$,
(b) $1+4 x+7 x^{2}+3 x^{3}+x^{4}$.
(2 marks)
(iv) (a) Show that

$$
(n-1, n-2, n-3, \ldots, 2,1,0)
$$

are possible scores in a tournament of n players.
(3 marks)
(b) Now let n be odd with $n=2 m+1$. Show there exists a tournament of n players in which each player scores m.
(3 marks)
(c) Deduce that each of the following is a possible set of scores in a tournament of $2 n$ players, where again $n=2 m+1$.

$$
\begin{aligned}
& (4 m+1,4 m, 4 m-1, \ldots, 2 m+1, m, m, \ldots m) \\
& (3 m+1,3 m+1, \ldots, 3 m+1,2 m, 2 m-1,2 m-2, \ldots, 2,1,0) .
\end{aligned}
$$

4 (i) For what value of x can the following Latin rectangle be extended to a 6×6 Latin square?

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & x & 6 & 2
\end{array}\right)
$$

Write down one such extension.
(ii) (a) Define what it means for two $n \times n$ Latin squares $L=\left(l_{i j}\right)$ and $M=\left(m_{i j}\right)$ to be orthogonal.
(b) Let p be a prime number. Define $p \times p$ matrices A_{k} for $k=1,2, \ldots, p-1$ by: $\left(A_{k}\right)_{i, j}$ is the element of $\{1,2, \ldots, p\}$ congruent to $k i+j \bmod p$. You may assume that A_{k} is a Latin square, for $k=1,2, \ldots, p-1$. Show that A_{k} and A_{h} are orthogonal, for $1 \leq k, h \leq p-1$ and $k \neq h$.
(iii) Assume that a design exists consisting of v varieties and b blocks, with each block containing k varieties and with each pair of varieties in λ blocks. Show that each variety is in precisely r blocks, where

$$
r=\frac{b k}{v}=\frac{\lambda(v-1)}{k-1}
$$

(7 marks)
(iv) We define four blocks:

$$
\{1,2,3\}, \quad\{1,2,4\}, \quad\{1,3,4\}, \quad\{2,3,4\} .
$$

Write down the corresponding incidence matrix M and calculate $M^{T} M$. Deduce that these are the blocks of a design and list all the parameters of the design.
(4 marks)

End of Question Paper

