
MAS334 COMBINATORICS — AUTUMN SEMESTER 2015-2016

EXAM SOLUTIONS AND MARK SCHEME

SARAH WHITEHOUSE

Solution to Question 1

ia) (standard) For n ∈ N, by the Binomial Theorem,

(1− x)n =

n∑
i=0

(−1)i
(
n

i

)
xi. (1 Mark)

So

1− (1− x)n = 1−
n∑

i=0

(−1)i
(
n

i

)
xi = 1− 1 +

n∑
i=1

(−1)i−1

(
n

i

)
xi

=
n∑

i=1

(−1)i−1

(
n

i

)
xi (1 Mark)

and so

1− (1− x)n

x
=

n∑
i=1

(−1)i−1

(
n

i

)
xi−1. (1 Mark)

ib) (unseen, easy but there as a hint for the next part)

1− (1− x)n

x
=

1− yn

1− y
= 1 + y + y2 + · · ·+ yn−1. (2 Marks)

ic) (unseen)
Integrating the identity from (a) with respect to x gives∫

1− (1− x)n

x
dx =

∫ n∑
i=1

(−1)i−1

(
n

i

)
xi−1 dx. (1 Mark)

⇒
∫ n−1∑

k=0

yk
dx

dy
dy =

n∑
i=1

(−1)i−1 1

i

(
n

i

)
xi + c

⇒
∫
−

n−1∑
k=0

ykdy =
n∑

i=1

(−1)i−1 1

i

(
n

i

)
xi + c

⇒ −
n−1∑
k=0

yk+1

k + 1
=

n∑
i=1

(−1)i−1 1

i

(
n

i

)
xi + c

1



2 SARAH WHITEHOUSE

So

−
n∑

k=1

(1− x)k

k
=

n∑
i=1

(−1)i−1 1

i

(
n

i

)
xi + c.

(3 Marks)
[1 for the integral on LHS, 1 for the integral on RHS, 1 for remembering the
constant of integration]
To determine the constant of integration c, set x = 0, giving

c = −
n∑

k=1

1

k
. (1 Mark)

Finally, to obtain the required identity, set x = 1, giving

n∑
i=1

(−1)i−1 1

i

(
n

i

)
= −c =

n∑
k=1

1

k
. (1 Mark)

iia) (bookwork) Consider a k − 1 by n grid. By a standard procedure involving
counting xi units of progress from left to right along the i-th horizontal grid
line up, it may be seen that the required solutions are in bijection with shortest
routes from bottom left to top right in the grid. Therefore there are

(
n+k−1
k−1

)
such solutions. (3 Marks)

iib) (bookwork) Suppose we have a finite set of items and properties 1, 2, 3, . . . , n.
Let N(i1, i2, . . . , ir) be the number of items which have the properties i1, i2, . . . , ir
(and maybe others). Then the number of items with at least one of the properties
is

N(1) + N(2) + N(3) + · · ·+ N(n)

−N(1, 2)−N(1, 3)− · · · −N(n− 1, n)

+ N(1, 2, 3) + N(1, 2, 4) + · · ·
−N(1, 2, 3, 4)− · · ·

...

+ (−1)n−1N(1, 2, 3, . . . , n).

(3 Marks)
iic) (similar to homework problem) As in the first part, the total number of

non-negative integer solutions to the given equation is(
21 + 4− 1

3

)
=

(
24

3

)
= 2024.

Let P1 be the property that x1 > 7, P2 the property that x2 > 9 and P3 the
property that x3 > 12. We want the number of non-negative integer solutions
with none of the properties P1, P2, P3. (2 Marks)
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So this is

total no. of solutions− no. of solutions with at least one of the properties

=

(
24

3

)
− (N(1) + N(2) + N(3)−N(1, 2)−N(1, 3)−N(2, 3) + N(1, 2, 3)) ,

where we have adopted usual I/E notation. (1 Mark)
Now, if x1 > 7, write x1 = 7 + y1 where y1 is a non-negative integer. So
non-negative integer solutions of the original equation with x1 > 7 correspond
to non-negative integer solutions of y1 + x2 + x3 + x4 = 14. So, by part (i),

N(1) =
(
17
3

)
. (2 Marks)

Similarly, N(2) =
(
15
3

)
, N(3) =

(
12
3

)
, N(1, 2) =

(
8
3

)
, and N(1, 3) =

(
5
3

)
, N(2, 3) =(

3
3

)
, N(1, 2, 3) = 0. (2 Marks)

So the answer is(
24

3

)
−
(

17

3

)
−
(

15

3

)
−
(

12

3

)
+

(
8

3

)
+

(
5

3

)
+

(
3

3

)
− 0 (1 Mark)

= 2024− 680− 455− 220 + 56 + 10 + 1 = 736.

Solution to Question 2

i) (unseen) If we work mod 2, it makes no difference if we insert plus or
minus signs. Each even number contributes zero and each of the five odd
numbers contributes 1, giving us 1 mod 2. So there is no choice of signs
giving 0. (3 Marks)

ii) (unseen) The number of squares is 3n− 3 = 3(n− 1). (1 Mark)
If n is even, the number of squares is odd, so this is impossible.

(1 Mark)
If n = 2m + 1 is odd, colour the squares alternately black and white and
consider the numbers of black and white squares. (1 Mark)
Suppose the corners are black. Then the number of black squares is

3(n− 1)

2
+ 1 = 3m + 1

and the number of white squares is 3m− 1. (1 Mark)
But dominoes cover the same number of squares of each colour, so it’s
impossible. (1 Mark)

iiia) (bookwork) If you place more than n letters in n pigeon-holes then some
pigeon-hole will contain more than one letter. (2 Marks)

iiib) (unseen)
Each person has either 0, 1, 2, 3 or 4 friends in the group. (1 Mark)
Suppose someone has 0 friends in the group. Notice that means that none
of the group has 4 friends, because then they would be friends with everyone
else. (Friendship is reciprocal.) (1 Mark)
So, in this case, we can label pigeon-holes 0 to 3 and place each of the five
people in the PH corresponding to their number of friends in the group.

(1 Mark)
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By the PHP, there will be two in the same PH, as required. (1 Mark)
On the other hand, if no-one has 0 friends, we repeat the procedure with
PHs 1 to 4. (1 Mark)

iiic) (unseen) Label 1789 pigeon-holes by the possible remainders on division
by 1789. (1 Mark)
Place each of 1790 numbers of the form 1, 11, 111, ... into the pigeon-hole
corresponding to its remainder on division by 1789. (1 Mark)
By the pigeon-hole principle, there will be two numbers in the same pigeon-
hole. (1 Mark)
Their difference is therefore divisible by 1789. (1 Mark)
This difference is of the form 111...10...0 = 111...1 · 10r. Since 1789 and 10r

are coprime, 1789 must divide 111...1. (1 Mark)

iva) (unseen, easy) For example, 7, 5, 1, 3, 8. (1 Mark)
ivb) (unseen, easy) No. 5 can only be chosen from A2, but then, apart from

in A2, 6 and 8 both only appear in A5, so cannot be simultaneously picked.
(2 Marks)

ivc) (bookwork) Sets A1, A2, . . . An have distinct representatives if and only if,
for each r, any collection of r of the sets contains at least r elements.

(2 Marks)

Solution to Question 3
i) (standard problem)

There are many ways of calculating, using Theorem 43 (select a square) and
Theorem 46 (disjoint boards) from the course.
The easiest is to first use the square top left in Theorem 43, arriving at
boards to which we can apply Theorem 46. (2 Marks)
We get:

rB(x) = rC(x) + xrD(x),

where C consists of a full 2 × 2 board and a disjoint 2 × 3 board with one
corner square shaded and D consists of two disjoint 1× 2 boards.

(3 Marks)
So

rB(x) = (1 + 4x + 2x2)(1 + 5x + 4x2) + x(1 + 2x)2

= 1 + 10x + 30x2 + 30x3 + 8x4 . (3 Marks)

[Alternative: Direct counting by hand will be given full marks if the cor-
rect answer is obtained; partial marks may be obtained for a partially cor-
rect answer depending on the explanation given for the counting procedure
adopted. ]

ii) (bookwork) We apply the IEP. The items are all n! ways of placing n
non-challenging rooks on the full n × n board. Property i is that the rook
in row i is in B. (3 Marks)
So N(i1, i2, . . . , ir) is the number of layouts of n non-challenging rooks on
an n× n board such that the rooks in rows i1, i2, ..., ir are in B.
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(1 Mark)
The number of ways of placing n non-challenging rooks on B is the number
of the n! items having none of the properties. (1 Mark)
This is n! minus the number of items with at least one of the properties.

(1 Mark)
By the IEP, this is

n!−N(1)−N(2)−N(3)− · · · −N(n)

+ N(1, 2) + N(1, 3) + · · ·+ N(n− 1, n)

−N(1, 2, 3)−N(1, 2, 4)− · · ·
+ N(1, 2, 3, 4) + · · ·

...

+ (−1)nN(1, 2, 3, . . . , n).

(2 Marks)
Now N(i1, i2, . . . , is) is the number of ways of placing s rooks in rows i1,
i2, ..., is of B multiplied by (n − s)!, the number of ways of placing the
remaining n− s rooks. (2 Marks)
So the sum of all the N(i1, i2, . . . , is) terms is rs(n− s)!. (1 Mark)
The required result comes from putting this into the formula above.

(1 Mark)
iiia) (standard problem) By parts (i) and (ii), the required number is

120− 24.10 + 6.30− 2.30 + 1.8− 1.0 = 120− 240 + 180− 60 + 8 = 8.

(2 Marks)
[Follow through from the candidate’s answer to (i).]

iiib) (unseen, but link between permutations and rooks was seen in an
example)
Permutations correspond to placement of non-challenging rooks on a full
board, and conditions on permutations are enforced by shading squares.
We see that this is the number of ways of placing 5 non-challenging rooks
on B, so the answer is 8 by part a). (3 Marks)
[A calculation directly by hand gets the marks, if the link to the rest of the
question is missed.]

Solution to Question 4
i) (standard problem) We adopt standard Latin square notation. Here

p = 3, q = 4 and n = 6. The extension is possible iff L(i) ≥ 3 + 4 − 6 = 1
for 1 ≤ i ≤ 6. This happens iff x = 5. (1 Mark)
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One extension is
3 1 2 4 5 6
1 3 6 2 4 5
4 6 5 3 1 2
2 4 1 5 6 3
5 2 4 6 3 1
6 5 3 1 2 4

 (6 Marks)

[Marking: 4 marks for any correct extension to 3 × 6 or 6 × 4; 2 marks
for any correct extension from there to 6 × 6. Partial marks available for
“partially correct” extensions.]

ii) (unseen)
iia) Either set up a suitable tournament, with players p1, . . . , pn, such that
pi beats each pj with j > i. Thus pi scores n− i, as required.
Alternatively, check that the conditions of Landau’s Theorem are satisfied,
by noting that for each r the sum of the smallest r scores is 1 + 2 + · · · +
(r − 1) =

(
r
2

)
. (3 Marks)

iib) We exhibit a suitable tournament. It has three subtournaments A, B,
C each as in part a). All players from subtournament A beat all those from
B (and lose to those from C). All players from subtournament B beat all
those from C (and lose to those from A). So all players from subtournament
C beat all those from A (and lose to those from B). Each player therefore
has their score from their subtournament plus n, resulting in the required
list of scores. (4 Marks)
[Note: This could also be done with Landau’s Theorem, but it’s a bit messy,
so I didn’t put “Hence, or otherwise” in the question.]

iii) (unseen)
iiia) A given number appears in the block corresponding to itself and the
block of each of the other nine numbers that do not share a row or column
with it, hence it appears in 10 blocks. (2 Marks)

iiib) Let x, y be a pair of numbers.
First consider the case where x and y are in the same row. They appear
together in exactly 6 blocks, namely those corresponding to squares not in
their row and not in either of their columns. (2 Marks)
Similarly if x and y are in the same column. (1 Mark)
Now suppose x and y are in different rows and different columns. Then
they appear together in exactly 6 blocks, namely the block of square x, the
block of square y and the four blocks of squares sharing neither row nor
column with x or y. (3 Marks)
iiic) Clearly, we have 16 varieties, the numbers 1, 2, . . . , 16. And we have 16
blocks, one for each square. (1 Mark)
Each block contains 10 varieties and each variety appears in 10 blocks.

(1 Mark)
Each pair of varieties appears in precisely 6 blocks.
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Thus we have a (16, 16, 10, 10, 6) design. (1 Mark)


