

SCHOOL OF MATHEMATICS AND STATISTICS

Autumn Semester 2015–16

Combinatorics

2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets.

1 (i) (a) Let $n \ge 1$. Use the Binomial Theorem to show that

$$\frac{1 - (1 - x)^n}{x} = \sum_{i=1}^n (-1)^{i-1} \binom{n}{i} x^{i-1}.$$

(3 marks)

(b) Show that

$$\frac{1 - (1 - x)^n}{x} = 1 + y + \dots + y^{n-1},$$

where y = 1 - x.

(2 marks)

(c) By integrating the expression in part (a), show that

$$\sum_{i=1}^{n} \frac{1}{i} = \sum_{i=1}^{n} (-1)^{i-1} \frac{1}{i} \binom{n}{i}.$$

(6 marks)

(ii) (a) How many solutions are there of the equation

$$x_1 + x_2 + \dots + x_k = n,$$

in which each x_i is a non-negative integer? Give a brief reason for your answer. (3 marks)

(b) State the Inclusion/Exclusion Principle.

(3 marks)

(c) How many solutions are there of the equation

$$x_1 + x_2 + x_3 + x_4 = 21,$$

in which each x_i is a non-negative integer, such that $x_1 < 7$, $x_2 < 9$ and $x_3 < 12$?

(8 marks)

- 2 (i) The numbers 1 to 10 are written in a row. Can one insert plus and minus signs between them in such a way that the value of the resulting expression is zero? (3 marks)
 - (ii) Consider a $3 \times n$ rectangle with the three squares in one corner removed. (The case n = 6 is pictured below.)

Show that this cannot be completely covered by non-overlapping dominoes (that is, by pieces which cover exactly two adjacent squares). (5 marks)

- (iii) (a) State the Pigeon-hole Principle. (2 marks)
 - (b) Show that in any group of five people, there are two who have the same number of friends within the group. (5 marks)
 - (c) Show that there exists an integer whose decimal representation consists entirely of 1s (that is, an integer of the form 111...1) which is divisible by 1789. (5 marks)
- (iv) (a) Find distinct representatives of the sets

$$A_1 = \{1, 2, 7\},\$$

$$A_2 = \{5, 6, 8\},\$$

$$A_3 = \{1, 3, 7\},\$$

$$A_4 = \{2, 3, 4, 7\},\$$

$$A_5 = \{1, 2, 6, 8\}.$$

(1 mark)

- (b) Can distinct representatives of these sets be chosen to include 5, 6 and 8? (2 marks)
- (c) State a necessary and sufficient condition for sets $A_1, A_2, ..., A_n$ to have distinct representatives. (2 marks)

3 (i) Calculate the rook polynomial of the (unshaded) board B:

(8 marks)

(ii) Let B be part of an $n \times n$ board with rook polynomial

$$1 + r_1 x + r_2 x^2 + \dots + r_n x^n$$

and let \overline{B} be the complement of B. Prove that the number of ways of placing n non-challenging rooks on \overline{B} is

$$\sum_{k=0}^{n} (-1)^k (n-k)! r_k,$$

where $r_0 = 1$. (12 marks)

- (iii) (a) Calculate the coefficient of x^5 in the rook polynomial of \overline{B} , where B is the board in part (i). (2 marks)
 - (b) Using a relationship between permutations and non-challenging rooks, or otherwise, find the number of permutations of $\{1, 2, 3, 4, 5\}$ satisfying the following conditions.

$$1 \mapsto 2, 2 \not\mapsto 4, 2 \not\mapsto 5, 3 \not\mapsto 1, 3 \not\mapsto 2, 4 \not\mapsto 1, 4 \not\mapsto 2.$$

(3 marks)

4 (i) For what value of x can the following Latin rectangle be extended to a 6×6 Latin square?

$$\left(\begin{array}{cccc}
3 & 1 & 2 & 4 \\
1 & 3 & 6 & 2 \\
4 & 6 & x & 3
\end{array}\right)$$

Write down one such extension.

(7 marks)

(ii) (a) Show that there is a tournament of n players with scores

$$(n-1, n-2, n-3, \ldots, 2, 1, 0).$$

(3 marks)

(b) Hence show that there is a tournament of 3n players with scores

$$(2n-1, 2n-1, 2n-1, 2n-2, 2n-2, 2n-2, \dots, n+1, n+1, n+1, n, n, n).$$

(4 marks)

(iii) Consider a 4×4 board with squares labelled by the numbers $1, 2, \dots, 16$ as shown.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Define blocks as follows. For each square on the board, form a block consisting of the number on that square together with the nine numbers not sharing a row or column with that square. For example, $\{1,6,7,8,10,11,12,14,15,16\}$ is a block, corresponding to the top left square.

- (a) Show that each number is in 10 blocks. (2 marks)
- (b) Show that each pair of numbers appears in precisely 6 blocks. (6 marks)
- (c) Deduce that the blocks make up a (16, 16, 10, 10, 6) design. (3 marks)

End of Question Paper