
MAS334 COMBINATORICS

1. Counting sets

We begin with a very simple point, which is easy to get slightly wrong (Google “off-by-one error”).

Definition 1.1. In this course, we will rarely be using real numbers. We will therefore use interval notation
to refer to intervals of integers:

[n,m] = {k ∈ Z | n ≤ k ≤ m} (n,m] = {k ∈ Z | n < k ≤ m}
[n,m) = {k ∈ Z | n ≤ k < m} (n,m) = {k ∈ Z | n < k < m}.

For example, we have

[3, 7] = {3, 4, 5, 6, 7} (3, 7] = {4, 5, 6, 7}
[3, 7) = {3, 4, 5, 6} (3, 7) = {4, 5, 6}.

The sizes of these sets are

|[n,m]| = m− n+ 1 |(n,m]| = m− n

|[n,m)| = m− n |(n,m)| = m− n− 1.

(The first three of these are valid for n ≤ m, but the last is only valid for n < m.) For example, we have

|[3, 7]| = 5 = 7− 3 + 1 |(3, 7]| = 4 = 7− 3

|[3, 7)| = 4 = 7− 3 |(3, 7)| = 3 = 7− 3− 1.

It is a common mistake to say that |[n,m]| = m− n or |(n,m)| = m− n, but the above examples show that
this is not correct.

Remark 1.2. Here is a related observation: if we have a fence consisting of n sections supported by
fenceposts, then the number of posts is one more than the number of sections. Each section has a post at
the right hand end, and there is one more post at the left hand end of the whole fence. (Google “fencepost
error”.)

0 1 2 3 4

1 2 3 4

5 fenceposts

4 fence sections

Definition 1.3. A binary sequence of length n is a sequence a = (a1, . . . , an) with ai ∈ {0, 1}. We write Bn

for the set of binary sequences of length n. We also write Bnk for the subset of binary sequences of length
n in which there are k ones.

Example 1.4.

• The sequence a = (0, 1, 0, 1, 1, 0) is a binary sequence of length 6, so a ∈ B6. We will typically use
abbreviated notation and write a = 010110 instead of a = (0, 1, 0, 1, 1, 0). As there are 3 ones in a,
we can also say that a ∈ B63.
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• The full list of elements of B3 is

B3 = {000, 001, 010, 011, 100, 101, 110, 111}.

(We have written these in dictionary order, which is good practice. It is much easier to deal with
these kind of constructions if we list things in a systematic and consistent order.)

• The full list of elements of B53 is

B53 = {00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, 11100}.

In the above example we saw that |B3| = 8 = 23. Of course, this can be generalised.

Proposition 1.5. |Bn| = 2n.

Proof. To choose an element a = (a1, . . . , an) ∈ Bn we have 2 choices for a1, 2 choices for a2 and so on,
making 2× 2× · · · × 2 = 2n choices for the sequence as a whole. □

Definition 1.6. Let A be a finite set. We let PA denote the set of all subsets of A. We also let PkA denote
the set of all subsets of size k in A.

Example 1.7. Take A = {a, b, c}. Then

PA = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

We also have

P2A = {{a, b}, {a, c}, {b, c}}.
We might also use more abbreviated notation:

PA = {∅, a, b, c, ab, ac, bc, abc}.

Proposition 1.8. If |A| = n then |PA| = 2n.

Proof.
Interactive demo

List the elements of A as x1, . . . , xn. To choose a subset of A, we first choose whether to include x1, then
choose whether to include x2 and so on. We have two choices for each xi, and thus 2n choices altogether.

Here is another way to say essentially the same thing. Given a binary sequence a = (a1, . . . , an), we define

Ua = {xi | ai = 1}.

For example, in the case n = 6, we have

U111000 = {x1, x2, x3} U100011 = {x1, x5, x6}.

(In the left hand example, we have ones in positions 1, 2 and 3, so the set is {x1, x2, x3}. In the right hand
example, we have ones in positions 1, 5 and 6, so the set is {x1, x5, x6}.) This construction gives a one-to-one
correspondence between subsets of A and binary sequences, so |PA| = |Bn| = 2n. □

Definition 1.9. For a finite set A, we define FkA to be the set of sequences a = (a1, . . . , ak) such that the
entries ai are distinct elements of A.

Example 1.10. If A = {a, b, c} then

F2A = {ab, ac, ba, bc, ca, cb}
F3A = {abc, acb, bac, bca, cab, cba}.

Proposition 1.11. If |A| = n and 0 ≤ k ≤ n then

|FkA| =
k−1∏
i=0

(n− i) = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

In particular, we have |FnA| = n!, but FkA is empty for k > n.
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Proof. Suppose we want to choose a sequence a = (a1, . . . , ak) ∈ FkA. Then a1 can be any element of A, so
there are n choices. Then a2 can be any element of A other than a1, so there are n− 1 choices. Then a3 can
be any element other than a1 and a2, so there are n− 2 choices, and so on. At the last stage, ak can be any
element of A except for a1, . . . , ak−1, so there are n− (k− 1) = n− k+ 1 choices. Thus, the overall number
of choices is

|FkA| = n(n− 1) · · · (n− k + 1) =

k−1∏
i=0

(n− i).

Note also that

n! = n× (n− 1)× (n− 2)× · · · × 2× 1

= n× (n− 1)× · · · × (n− k + 1)× (n− k)× (n− k − 1) · · · × 2× 1

(n− k)! = (n− k)× (n− k − 1) · · · × 2× 1

n!/(n− k)! = n× (n− 1)× · · · × (n− k + 1) = |FkA|.
In particular, we have |FnA| = n!/0! = n!. In the other hand, if k > n, it is clear that we cannot have a list
of k distinct elements in A, because A has only n elements; so FkA = ∅. □

Definition 1.12. For integers n, k with 0 ≤ k ≤ n we define(
n

k

)
=

n!

k!(n− k)!
.

For k < 0 or k > n we define
(
n
k

)
= 0. In this course, we will consider

(
n
k

)
to be undefined for n < 0.

Corollary 1.13. If |A| = n, then |PkA| =
(
n
k

)
.

Proof. If k > n it is clear that PkA is empty so |PkA| = 0 =
(
n
k

)
. Suppose instead that 0 ≤ k ≤ n. Every

list a = (a1, . . . , ak) ∈ FkA gives a subset Ua = {a1, . . . , ak} ∈ PkA, and every subset of size k arises in this
way. However, we can reorder the list a in k! different ways, and they all give the same subset. Thus, we
have

|PkA| = |FkA|
k!

=
n!

k!(n− k)!
=

(
n

k

)
.

□

Corollary 1.14. We also have |Bnk| =
(
n
k

)
.

Proof. To specify an element of Bnk, we just need to specify the k positions in [1, n] where the ones appear.
There are

(
n
k

)
subsets of size k in [1, n], so |Bnk| =

(
n
k

)
. □

Problem 1.15. Suppose that 6 people compete in an Olympic pie-eating competition. In how many ways
can the medals be awarded? If the BBC decides to interview three of the finalists, chosen at random, in how
many ways can they do that? What if there were 100 finalists?

Solution.
Interactive demo

Let A be the set of competitors, so |A| = 6. For the first question, we need an ordered list of three distinct
medal winners (gold, then silver, then bronze), so the number of possibilities is |F3A| = 6× 5× 4 = 120. In
more detail, there are 6 choices for who gets the gold. When we have awarded the gold, there are 5 choices
left for who gets silver, then 4 choices for who gets bronze. Thus, the total number of ways in which the
medals can be awarded is 6× 5× 4 = 120.

For the second question, we need an unordered set of three interviewees, so the number of possibilities is
|P3A| =

(
6
3

)
= 20. In more detail, there are 120 possible choices for the list of people who get interviewed,

in the order in which they get interviewed. But we do not care about the order, we only care about the set
of interviewees. So we need to divide by the number of possible orders, which is 3! = 6. Thus, the number
of ways to choose a set of three interviewees is 120/6 = 20.

If there were 100 finalists, then the number of ways of awarding the medals would be 100 × 99 × 98 =
970200 ≃ 9.7 × 105, and the number of ways of choosing the interviewees would be (100 × 99 × 98)/6 =
161700 ≃ 1.6× 105.

3

http://strickland1.org/courses/MAS334/demos/choices.html


Problem 1.16. In the National Lottery, six balls are drawn from a set of 59 balls. How many possible
outcomes are there?

Solution. We need to count the subsets of size 6 in a set of size 59; the answer is(
59

6

)
=

59× 58× 57× 56× 55× 54

6!
= 45057474 ≃ 4.5× 107.

The other familiar place where we see binomial coefficients is in the binomial expansion formula:

(1 + x)n =

n∑
k=0

(
n

k

)
xk.

We next recall how this works.

Example 1.17.
Interactive demo

Consider the case n = 4. We have

(1 + x)4 =(1 + x)(1 + x)(1 + x)(1 + x)

=1111 + 111x+ 11x1 + 11xx+ 1x11 + 1x1x+ 1xx1 + 1xxx+

x111 + x11x+ x1x1 + x1xx+ xx11 + xx1x+ xxx1 + xxxx

=1111+

111x+ 11x1 + 1x11 + x111+

11xx+ 1x1x+ 1xx1 + x11x+ x1x1 + xx11+

1xxx+ x1xx+ xx1x+ xxx1+

xxxx

=1 + 4x+ 6x2 + 4x3 + x4 =

4∑
k=0

(
4

k

)
xk.

In the first step we have just expanded everything out in the obvious way, writing the terms in dictionary
order. Each term is a product of four factors, each of which is either 1 or x. To generate all the terms, we
have to make 4 choices of whether to have a 1 or an x, giving 24 = 16 terms altogether. In the second step,
we just regroup the terms according to how many x’s appear. There is one term with no x’s, 4 terms with
one x, 6 terms with two x’s, 4 terms with three x’s and one term with four x’s. In general, to generate a
term with k x’s, we just need to choose k slots from 4 in which the x’s appear, and put ones in the other
slots. Thus, there are

(
4
k

)
terms with k x’s, and each of these contributes xk to the expansion. Thus, we

have (1 + x)4 =
∑

k

(
4
k

)
xk.

As an exercise in notation, we can write this slightly differently. Let A be a subset of {1, . . . , n}. Let
tA be the term in the expansion where we take x from the factors corresponding to i ∈ A, and 1 from the
factors corresponding to i ̸∈ A. The number of x’s is then equal to |A|, so the product is x|A|. We get a
term for every possible subset A ⊆ {1, . . . , n}, so we get

(1 + x)n =
∑
A

tA =
∑
A

x|A|.

The number of xk’s in this sum is the number of subsets A such that |A| = k, or in other words
(
n
k

)
. We

therefore have (1 + x)n =
∑

k

(
n
k

)
xk as before.

Proposition 1.18. For any n ≥ 0, we have 1 + 2 + · · ·+ n =
(
n+1
2

)
.

Proof. Put Sn = 1 + 2 + . . .+ (n− 1) + n. We can rewrite this with the terms in reverse order as Sn =
n+ (n− 1) + · · ·+ 2 + 1. Adding these two equations together, we get

2Sn = (1 + n) + (2 + (n− 1)) + · · ·+ ((n− 1) + 2) + (n+ 1).
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The right hand side consists of n terms, each of which is equal to n+ 1, so the total is (n+ 1)n. It follows
that Sn = (n + 1)n/2 =

(
n+1
2

)
as claimed. This proof can be illustrated as shown below: there are Sn red

dots above the diagonal line and Sn blue dots below it, showing that 2Sn = (n+ 1)n.

n

n+ 1

Video

Alternatively, we can give a proof by induction. For n = 0 the claim is that 0 =
(
1
2

)
, which is clear. For

n = 1 the claim is that 1 =
(
2
2

)
, which is also clear. For n > 1, we can assume as an induction hypothesis

that

Sn−1 = 1 + 2 + · · ·+ (n− 1) =

(
n

2

)
= n(n− 1)/2 = 1

2n
2 − 1

2n.

Adding n to both sides, we get

Sn = (1 + 2 + · · ·+ (n− 1)) + n = 1
2n

2 − 1
2n+ n = 1

2 (n
2 + n) =

(
n+ 1

2

)
,

as required. □

Proposition 1.19. For n, k ∈ N with (n, k) ̸= (0, 0) we have

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Note that we have explicitly excluded the case n = k = 0. If k = 0 and n > 0 then the claim is that
1 = 1 + 0 which is true. If k > n then the claim is that 0 = 0 + 0 which is true. If k = n > 0 then the claim
is that 1 = 0 + 1 which is true. This just leaves the interesting case where 0 < k < n. We will give two
different proofs for this case.

Bijective proof.
Interactive demo

The binomial coefficient
(
n
k

)
is the number of subsets A ⊆ [1, n] with |A| = k. To choose such a subset,

we first decide whether we want n to be an element of A. If we decide that n should not be an element of
k, then we just choose A to be a subset of size k in [1, n − 1], and there are

(
n−1
k

)
possibilities for this. If

we decide that we do want n to be an element of A, then we need to choose a further k − 1 elements from
[1, n − 1] to make up the rest of A, and there are

(
n−1
k−1

)
possibilities for this. Thus, we have

(
n−1
k

)
+

(
n−1
k−1

)
possibilities for A, and this must agree with the number

(
n
k

)
that we obtained more directly. □

Algebraic proof. Recall that
(
n
k

)
= n!

k!(n−k)! . On the top we have

n! = n× (n− 1)× (n− 2)× · · · × 2× 1 = n× ((n− 1)!).

We can also write the n here as (n− k) + k, giving n! = (n− k)× (n− 1)! + k × (n− 1)!. By substituting
this into the definition of

(
n
k

)
, we get(

n

k

)
= (n− k)

(n− 1)!

k!(n− k)!
+ k

(n− 1)!

k!(n− k)!
.
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In the first term, we can rewrite k! as k × (k − 1)!, and in the second term, we can rewrite (n − k)! as
(n− k)(n− k − 1)!. (These are valid because we are assuming that 0 < k < n, so k, n− k > 0.) This gives(

n

k

)
= (n− k)

(n− 1)!

k!(n− k)(n− k − 1)!
+ k

(n− 1)!

k(k − 1)!(n− k)!

=
(n− 1)!

k!(n− 1− k)!
+

(n− 1)!

(k − 1)!(n− k)!
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Video

□

Proposition 1.20. For 0 ≤ k ≤ n we have

(
n

k

)
=

(
n

n− k

)
.

Bijective proof.
Interactive demo

The binomial coefficient
(
n
k

)
is the number of subsets A ⊆ [1, n] size k in [1, n]. To choose such a subset,

we can just choose a subset B ⊆ [1, n] of size n − k in [1, n], and take A = Bc. This gives a one-to-one
correspondence between subsets of size k and subsets of size n− k, so

(
n
k

)
=

(
n

n−k

)
. □

Algebraic proof. (
n

n− k

)
=

n!

(n− k)!(n− (n− k))!
=

n!

(n− k)!k!
=

(
n

k

)
.

□

Definition 1.21. A subset A ⊆ [1, n] is gappy if there are no adjacent elements. In more detail, the condition
is that there should not exist a ∈ [1, n− 1] such that a ∈ A and a+ 1 ∈ A. Similarly, we say that a binary
sequence is gappy if it has no adjacent ones. We write Gnk for the set of gappy subsets A ⊆ [1, n] with
|A| = k.

Example 1.22. The set A = {1, 5, 7, 11} ⊆ [1, 20] is gappy. The set B = {1, 5, 6, 11} is not gappy, because
it contains the adjacent elements 5 and 6. The full list of elements of G73 is

G73 = {135, 136, 137, 146, 147, 157, 246, 247, 257, 357},

so |G73| = 10.

Proposition 1.23. If n ≥ 2k − 1 then |Gnk| =
(
n−k+1

k

)
, but if n < 2k − 1 then Gnk = ∅ so |Gnk| = 0.

Proof. We have discussed before that subsets of [1, n] correspond to binary sequences, and it is clear that
gappy subsets correspond to gappy sequences, so we will work with binary sequences from now on. We will
also assume that k > 0, leaving the trivial case k = 0 to the reader. Suppose that we have a gappy sequence
a ∈ Gnk. The first one in a might appear in the very first position, so it need not be preceded by a zero.
However, there are k−1 more ones, and by the gappy condition, each of them must have a zero immediately
before it. The ones and these adjacent zeros take 2k − 1 slots altogether, so we must have n ≥ 2k − 1. This
shows that Gnk = ∅ if n < 2k − 1; we will assume that n ≥ 2k − 1 from now on. If we delete these zeros,
we get a binary sequence of length n− k+1 containing k ones, or in other words, and element of Bn−k+1,k.
On the other hand, if we are given an element of Bn−k+1,k, then we can get an element of Gnk by inserting
zeros to the left of all the ones, except for the first one. Thus, we have a one-to-one correspondence between
Gnk and Bn−k+1,k, showing that |Gnk| = |Bn−k+1,k| =

(
n−k+1

k

)
.

Here are some examples of elements of G73, and the corresponding elements of B53:
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B53 G73

1 0 1 0 1 1 0 0 1 0 0 1

0 1 1 1 0 0 1 0 1 0 1 0

1 1 0 0 1 1 0 1 0 0 0 1

Video

□

Problem 1.24. Suppose that a doctor’s surgery has a single row of 12 chairs, and there are 5 patients
waiting. In how many ways can they be seated such that no two are next to each other?

Solution. The number is |G12,5| =
(
12−5+1

5

)
=

(
8
5

)
= 56.

Problem 1.25. In a draw for the National Lottery (as in Problem 1.16), what is the probability that there
is an adjacent pair of numbers?

Solution. We are selecting an element of P6[1, 59] at random, and we want to know the probability that it
is not gappy. The total size of P6[1, 59] is

(
59
6

)
≃ 4.5× 107. The number of gappy sets is

|G6[1, 59]| =
(
59− 6 + 1

6

)
=

(
54

6

)
= 28827165 ≃ 2.6× 107.

Thus, the number of non-gappy sets is
(
59
6

)
−

(
54
6

)
≃ 1.9× 107, and the proportion of non-gappy sets is(

59
6

)
−

(
54
6

)(
59
6

) ≃ 1.9× 107

4.5× 107
≃ 0.42.

Thus, approximately 42% of draws will have an adjacent pair of numbers.

2. Counting solutions

Proposition 2.1. Consider an equation x1+· · ·+xk = n, where x1, . . . , xk are required to be strictly positive
integers. Then

number of solutions =

(
n− 1

k − 1

)
=

(
right hand side − 1

number of variables − 1

)
.

Proof. Consider a subset A ⊆ [1, n − 1] with |A| = k − 1. We can list the elements as 0 < a1 < a2 < · · · <
ak−1 < n say. We then put

x1 = a1 > 0

x2 = a2 − a1 > 0

x3 = a3 − a2 > 0

· · · · · ·
xk−1 = ak−1 − ak−2 > 0

xk = n− ak−1 > 0.

If we add these equations together, then the a’s will all cancel, and we get x1 + · · ·+ xk = n, so we have a
solution to the original equation. Conversely, if we have a solution x1 + · · ·+ xn = k (with xi > 0) then we
have a corresponding subset

A = {x1, x1 + x2, x1 + x2 + x3, . . . , x1 + · · ·+ xk−1}
of size k−1 in [1, n−1]. This gives a one-to-one correspondence between the set of solutions and Pk−1[1, n−1],
so the number of solutions is

(
n−1
k−1

)
.
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Video

□

Example 2.2. We can illustrate the above proof as follows. Take k = 4 and n = 9, so we are considering
the equation x1 + x2 + x3 + x4 = 9. The proof gives a bijection between the solution set and the set P3[1, 8]
of subsets of size 3 in [1, 8]. One such subset is {1, 5, 7}; it corresponds to the solution 1 + 4 + 2 + 2 = 9, as
shown below.

1 2 3 4 5 6 7 8 9

x1 = 1 x2 = 4 x3 = 2 x4 = 2

a1 = 1 a2 = 5 a3 = 7

Example 2.3. Consider the equation x1 + x2 + x3 + x4 = 6 (with xi > 0). The proposition tells us that
the number of solutions is

(
5
3

)
= 10. They can be listed (in dictionary order) as follows.

1 + 1 + 1 + 3 1 + 1 + 2 + 2 1 + 1 + 3 + 1 1 + 2 + 1 + 2 1 + 2 + 2 + 1
1 + 3 + 1 + 1 2 + 1 + 1 + 2 2 + 1 + 2 + 1 2 + 2 + 1 + 1 3 + 1 + 1 + 1.

Proposition 2.4. Consider an equation y1 + · · ·+ yk = m, where y1, . . . , yk are required to be nonnegative
integers. Then

number of solutions =

(
m+ k − 1

k − 1

)
=

(
right hand side + number of variables − 1

number of variables − 1

)
.

Proof. If we put xi = yi+1, then the variables xi are strictly positive integers, and must satisfy x1+· · ·+xk =
m+k. By Proposition 2.1, the number of solutions to this new equation is

(
m+k−1
k−1

)
, so this is also the number

of solutions to the original equation. □

Example 2.5. The above argument shows that nonnegative solutions to y1 + . . . + yk = m biject with
subsets {a1, . . . , ak} ⊆ [1,m+ k − 1] of size k. Algebraically, the correspondence is

y1 = a1 − 1 ≥ 0

y2 = a2 − a1 − 1 ≥ 0

y3 = a3 − a2 − 1 ≥ 0

· · · · · ·
yk−1 = ak−1 − ak−2 − 1 ≥ 0

yk = m+ k − 1− ak−1 ≥ 0.

For a pictorial example, consider the equation y1 + y2 + y3 + y4 = 5, so k = 4 and m = 5 and m+ k− 1 = 8.
The set {1, 5, 7} ∈ P3[1, 8] corresponds to the solution 0 + 3 + 1 + 1 = 5, as illustrated below:

1 2 3 4 5 6 7 8

y1 = 0 y2 = 3 y3 = 1 y4 = 1

a1 = 1 a2 = 5 a3 = 7

We can also draw this slightly differently, by writing the binary sequence 10001010 corresponding to the set
{1, 5, 7}:

1 0 0 0 1 0 1 0

y1 = 0 y2 = 3 y3 = 1 y4 = 1

In this representation, the numbers yi are just the lengths of the blocks of zeros between the ones (including
the blocks at the left and right hand ends).
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Remark 2.6. We can now give another approach to the problem of counting gappy sets. Suppose we want
a gappy set A = {a1, . . . , ak} of size k in [1, n]. Let x0 be the size of the gap before a1, and let xk be the size
of the gap after ak. These are both allowed to be zero. However, the gap between ai and ai+1 is required
to have size at least one, so we can express it as xi + 1, where xi ≥ 0. As A has size k in [1, n], see that the
total size of the gaps is n− k. This gives the equation

x0 + (x1 + 1) + · · ·+ (xk−1 + 1) + xk = n− k.

On the left hand side, we have k − 1 extra ones, so we can rearrange to get

x0 + · · ·+ xk = n− 2k + 1.

Here we have k + 1 variables and n− 2k + 1 on the right hand side, so the number of solutions is(
right hand side + number of variables − 1

number of variables − 1

)
=

(
(n− 2k + 1) + k

k

)
=

(
n− k + 1

k

)
.

This agrees with the number of gappy sets, as we found in Proposition 1.23.

Problem 2.7. Consider an n×m grid. Suppose that we want to go from the bottom left to the top right by
taking a sequence of steps, each step going one space to the right or one space upwards. For example, two
such routes across a 6× 3 grid are shown below.

How many different routes are possible?

Solution.
Interactive demo

A route from the bottom left to the top right must consist of n+m steps, of which n must be horizontal
and m vertical. To choose such a path, we just need to choose which of the steps are horizontal. The number
of ways of making that choice is

(
n+m
n

)
. Thus, the number of paths is

(
n+m
n

)
.

Remark 2.8.
Interactive demo

We now have a new way to think about Proposition 2.4. Consider for example the equation x1+x2+x3+
x4 = 6. The proposition tells us that the number of solutions is

(
6+4−1
4−1

)
=

(
9
3

)
= 84. Given any solution, we

can construct a grid path like this: we start at (0, 0), then take x1 horizontal steps, then a vertical step, then
x2 horizontal steps, then a vertical step, then x3 horizontal steps, then a vertical step, then x4 horizontal
steps. Altogether this gives x1 + x2 + x3 + x4 = 6 horizontal steps and 3 vertical steps, so we have a grid
path from (0, 0) to (6, 3). For example, the path on the left below has horizontal segments of length 1, 2, 1
and 2, so it corresponds to the equation 1 + 2 + 1 + 2 = 6. The path on the right starts by going upwards,
which we count as having an initial horizontal segment of length 0. We then have a horizontal segment of
length 4, then a vertical segment of length 2. We count this as two vertical segments of length one, with
a horizontal segment of length 0 in between. Finally, we have a horizontal segment of length 2. Thus, the
corresponding solution is 0 + 4 + 0 + 2 = 6.

1 + 2 + 1 + 2 = 6 0 + 4 + 0 + 2 = 6

9
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With this construction, we get one grid path for every solution to the equation, and vice-versa. Thus, the
number of solutions is the same as the number of grid paths. Any such path consists of 9 steps, of which 3
must be vertical. Thus, the number of grid paths is

(
9
3

)
= 84, and the number of solutions to our equation

is also 84. All this can be generalised in a straightforward way: if we have a nonnegative solution to the
equation x1 + · · · + xk = n, then we can use it to make a grid path consisting of horizontal segments of
lengths x1, . . . , xk, and a single vertical step between these, making k−1 vertical steps and x1+ · · ·+xk = n
horizontal steps altogether. To specify such a path, we take n+ k− 1 steps and choose which k− 1 of them
should be vertical. The number of solutions is the number of possible ways to make this choice, which is(
n+k−1
k−1

)
. This agrees with Proposition 2.4.

Proposition 2.9. For 0 < k ≤ n we have(
n

k

)
=

(
k − 1

k − 1

)
+

(
k

k − 1

)
+ · · ·+

(
n− 1

k − 1

)
=

n∑
m=k

(
m− 1

k − 1

)
.

Bijective proof.
Interactive demo

The left hand side is the number of subsets A ⊆ [1, n] of size k. We will show that the right hand side
can also be interpreted in the same way. To choose A, we can start by choosing the largest element of A,
say m. Then we need to choose k − 1 additional elements, which must all be less than m. This will only be
possible if m ≥ k, so we can assume that k ≤ m ≤ n. Once we have chosen m, the remaining k− 1 elements
must be taken from [1,m− 1], and there are

(
m−1
k−1

)
ways to do this. The total number of possible choices is

therefore
∑n

m=k

(
m−1
k−1

)
, as required. □

Inductive proof. We will argue by induction on n. The base case is when n = 1. As 0 < k ≤ n, we must
also have k = 1 in this case. The claim is then that

(
1
1

)
=

∑1
m=1

(
0

m−1

)
=

(
0
0

)
, and this is true because(

1
1

)
=

(
0
0

)
= 1.

Now suppose that n > 1 and 0 < k ≤ n. We can assume as an induction hypothesis that(
n− 1

k

)
=

(
k − 1

k − 1

)
+ · · ·+

(
n− 2

k − 1

)
=

n−1∑
m=k

(
m− 1

k − 1

)
.

Adding
(
n−1
k−1

)
to both sides gives(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
k − 1

k − 1

)
+ · · ·+

(
n− 2

k − 1

)
+

(
n− 1

k − 1

)
=

n∑
m=k

(
m− 1

k − 1

)
.

However, Proposition 1.19 tells us that the left hand side is the same as
(
n
k

)
, so we see that

(
n
k

)
=

∑n
m=k

(
m−1
k−1

)
as claimed. □

Proposition 2.10. In a triangle as shown, the sum of all the entries is
(
N+2
3

)
.

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

N

Proof.
Interactive demo
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Let T be the sum of all the numbers in the triangle. We can divide the triangle into stripes as follows:

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

N

The sum of the terms in the p’th stripe is 1+2+· · ·+p, which is the same as
(
p+1
2

)
by Proposition 1.18. Thus,

the sum of all the numbers in the triangle is T =
∑N

p=1

(
p+1
2

)
. On the other hand, we can take n = N + 2

and k = 3 in Proposition 2.9 to get (
N + 2

3

)
=

N+2∑
q=3

(
q − 1

2

)
.

If we put q = p+ 2, this becomes (
N + 2

3

)
=

N∑
p=1

(
p+ 1

2

)
= T,

as claimed. □

Problem 2.11. Consider the same triangle again.

We have marked four different upward-pointing subtriangles. How many such subtriangles are there in total?

Solution.
Interactive demo

Consider the following picture:
11
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3

The shaded triangle appears as the bottom right corner of three different subtriangles, one of size 1, one of
size 2 and one of size 3, which are also shown in the picture. Because of this, we have marked the shaded
triangle with a 3. In the same way, for each upward triangle T of size one, we can count all the subtriangles
that have T as the bottom right corner, and mark T with that number. We get the following picture:

1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

5

5

6

The total number of all subtriangles is the sum of the numbers in this picture. This is just the same as the
sum considered in Proposition 2.10 (with N = 6), so the total number of subtriangles is

(
6+2
3

)
=

(
8
3

)
= 56.

More generally, if we start with a triangle of size N , the total number of upward-pointing subtriangles is(
N+2
3

)
.
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Definition 2.12. The Fibonacci numbers fn are defined by f0 = 1 and f1 = 1 and fn = fn−2 + fn−1 for all
n ≥ 0. For example, we have

f2 = f0 + f1 = 1 + 1 = 2 f3 = f1 + f2 = 1 + 2 = 3

f4 = f2 + f3 = 2 + 3 = 5 f5 = f3 + f4 = 3 + 5 = 8

f6 = f4 + f5 = 5 + 8 = 13 f7 = f5 + f6 = 8 + 13 = 21.

Proposition 2.13. For all n ≥ 0 we have

fn =

(
n

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+ · · · =

∑
k≥0

(
n− k

k

)
.

(Recall here that
(
m
k

)
is defined to be zero if k > m, so the terms in the sum are eventually zero.)

Proof.
Video

Put gn =
∑

k≥0

(
n−k
k

)
, so the claim is that gn = fn. We will prove this by induction. For the first few

cases, we have

g0 =

(
0

0

)
+

(
−1

1

)
+

(
−2

2

)
+ · · · = 1 + 0 + 0 + · · · = 1 = f0

g1 =

(
1

0

)
+

(
0

1

)
+

(
−1

2

)
+ · · · = 1 + 0 + 0 + · · · = 1 = f1

g2 =

(
2

0

)
+

(
1

1

)
+

(
0

2

)
+ · · · = 1 + 1 + 0 + · · · = 2 = f2.

Now suppose that n > 2, and consider gn =
∑

k≥0

(
n−k
k

)
. Proposition 1.19 tells us that

(
n−k
k

)
=

(
n−k−1

k

)
+(

n−k−1
k−1

)
. This gives

gn =
∑
k≥0

(
n− k − 1

k

)
+

∑
k≥0

(
n− k − 1

k − 1

)
.

The first sum here directly matches the definition of gn−1. In the second sum, we note that the term for
k = 0 is

(
n−1
−1

)
= 0, so we can start from k = 1 instead of k = 0. We can then rewrite the sum in terms

of the variable j = k − 1, so that j ≥ 0 and k = j + 1 and n − k − 1 = n − 2 − j. The second sum then
becomes

∑
j≥0

(
n−2−j

j

)
, which is gn−2. We now see that gn = gn−1 + gn−2. We can assume as an inductive

hypothesis that gn−1 = fn−1 and gn−2 = fn−2, so we have gn = fn−1 + fn−2. Using the definition of the
Fibonacci numbers, this becomes gn = fn, as claimed. □

Proposition 2.14. Suppose we have points a1, . . . , an in anticlockwise order around the unit circle, and we
draw a line lij from ai to aj for each i ̸= j. Suppose that the points are in general position, so there is no
point where more than two of the lines cross. Then the resulting diagram has

(
n
2

)
lines, and

(
n
4

)
interior

crossing points, and 1 +
(
n
2

)
+
(
n
4

)
regions.

Example 2.15. The following picture shows the case shows the case n = 5. The number of lines is 10,
which is

(
5
2

)
as expected. The number of interior crossing points (marked in black) is 5, which is

(
5
4

)
as

expected. The lines divide the disk into 16 regions, and 16 = 1 +
(
5
2

)
+

(
5
4

)
as expected.
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Proof of Proposition 2.14.
Interactive demo

As lij = lji, we see that the number of lines is the number of possible subsets {i, j} ⊆ {1, . . . , n} of size
two, which is

(
n
2

)
.

Now suppose we have a subset A ⊆ {1, . . . , n} of size 4. We can list the elements in order as h, i, j, k with
h < i < j < k. As we have numbered the points ap in order around the circle, we find that the line lhj meets
the line lik at a single point bA lying inside the circle:

ah

ai

aj

ak

lik

lhj

bA

This construction gives a bijection from the set of subsets of size 4 to the set of internal crossing points, so
the number of such points is

(
n
4

)
as claimed.

Now suppose we start with an empty disc, and add in the lines lij one by one. At each stage, we keep track
of the number L of lines, the number C of internal crossings and the number R of regions. We also keep track
of the number E = R−L−C. At the beginning (stage 0) there are no lines or crossings, and the disc is a single
undivided region, so L = C = 0 andR = 1 and E = 1−0−0 = 1. More compactly, we can write (L,C,R,E) =
(0, 0, 1, 1). At stage 1, we add a single line, which splits the disk into two regions, but there are still no cross-
ings. We therefore have L = 1 and C = 0 and R = 2 and E = 2−1−0 = 1, or in other words (L,C,R,E) =
(1, 0, 2, 1). At stage 2, we add a second line, and there are several different possibilities, depending on how

14

http://strickland1.org/courses/MAS334/demos/circle_cutting.html


the two lines are placed relative to each other. However, we find that all three possibilities still have E = 1.

(0, 0, 1, 1)

Stage 0

(1, 0, 2, 1)

Stage 1

(2, 1, 4, 1) (2, 0, 3, 1)

Three possibilities for stage 2

(2, 0, 3, 1)

In fact, we claim that E stays equal to 1 throughout the whole process. Indeed, suppose we add in a
new line lij from ai to aj . This may create new crossing points. We list these in order (moving from ai to
aj) as x1, . . . , xr say, and we also write x0 = ai and xr+1 = aj . This divides the new line into segments
si = [xi−1, xi], for i = 1, . . . , r + 1. Each of these r + 1 segments cuts one of the old regions into two new
regions, so the number R of regions increases by r + 1. At the same time, L increases by 1 and C increases
by r, so the combination E = R − L− C is unchanged. (It can also happen that there are no new crossing
points; then everything works in essentially the same way, but with r = 0.) At stage 0 we have E = 1, so
at the last stage we still have E = 1. However, at the last stage we have added in all the lines, so by our
previous discussion we have L =

(
n
2

)
and C =

(
n
4

)
. We now see that

1 = E = R− L− C = R−
(
n

2

)
−

(
n

4

)
,

and we can rearrange this to get R = 1 +
(
n
2

)
+
(
n
4

)
as claimed. □

3. Parity

Problem 3.1. How many solutions are there for the equation 2x+ 6y = 11? What if we insist that x and
y must be integers?

Solution. If we work with real numbers then the equation is equivalent to y = (11− 2x)/6. Thus, for every
real number t we have a solution (x, y) = (t, (11− 2t)/6), showing that there are infinitely many solutions.

However, there are no solutions at all if we required that x and y are integers. Indeed, if x and y are
integers then 2x+ 6y is an even integer, and so cannot be equal to 11.

Problem 3.2. Are there integer solutions for 12x+ 18y = 250?

Solution. By comparison with the previous example, we might be tempted to say yes: both the left and right
hand sides are even, so there is no problem with parity. However, just because there is no problem with
parity, we cannot conclude that there are no other problems. In fact, the left hand side is always divisible
by 3, but the right hand side is not, so in fact there are no integer solutions.

Problem 3.3. Suppose we have an n × n chessboard. Can we cover it by non-overlapping dominos? (It
matters whether n is even or odd). What if we remove two opposite corners from the board; can we cover
the remainder of the board by non-overlapping dominos?

Solution.
Interactive demo

Suppose that n is even, say n = 2m. Then we can cover each row of the board with m non-overlapping
horizontal dominos, and thus cover the whole board with 2m2 non-overlapping dominos. The case where
n = 6 and m = 3 is like this:
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Now suppose that n is odd. We could try to cover the board like this:

This fails, because there is one extra square that we have not covered. However, this does not really prove
anything. Our first unimaginative approach has failed, but perhaps that is just because we were not clever
enough; perhaps there is a different approach of stupendous complexity and cunning that will cover the
whole board? In fact that is not the case, but we need a proper proof to explain why. Fortunately, that is
not very difficult. We are assuming that n is odd. There are n2 squares in total, and this number is also
odd. On the other hand, each domino covers two squares, so any set of m non-overlapping dominos covers
2m squares, and this number is even. Thus, it is impossible for a set of non-overlapping dominos to cover
the whole board.

Now suppose we consider a nicked n × n board (where n ≥ 2), with two opposite corners removed. The
total number of squares is n2 − 2. If n is odd then n2 − 2 is again odd, so the nicked board still cannot
be covered by disjoint dominos. Suppose instead that n is even, say n = 2m. Then the nicked board has
4m2 − 2 = 2(2m2 − 1) squares, and this number is even. We might be tempted to deduce that the board
can be covered by disjoint dominos, but that would be too hasty. Suppose that we colour the squares in
the usual chessboard pattern. The full (2m)× (2m) board will then have 2m2 white squares and 2m2 black
squares. The two removed corners can be joined by a diagonal line, and all the squares on that line will have
the same colour, so in particular, the two removed corners will have the same colour. Suppose for the sake
of example that they are both white. This nicked board will then have 2m2−2 white squares and 2m2 black
squares. However, every domino will cover one white square and one black square. Thus, any set of disjoint
dominos will cover the same number of black squares as white squares. As the nicked board has more black
squares than white squares, it cannot be covered by a disjoint set of dominos.

Problem 3.4. Consider a puzzle consisting of the following tiles:
16



Note that these cover 28 squares in total. Can they be arranged to cover a 4× 7 rectangle? (You are allowed
to rotate the tiles or flip them over.)

Solution.
Interactive demo

We can imagine placing the tiles on a grid that is coloured like a chessboard. It is not hard to see that
however you place the first six tiles, each of them will cover two white squares and two black squares. (One
way to see this is to note that each of the first six tiles can be divided into two non-overlapping dominos.)
That makes 12 white squares and 12 black squares altogether. However, the last T-shaped tile is different:
however you place it, it will cover either three black squares and one white square, or three white squares
and one black square. Thus, the full set of seven tiles will cover either 15 black and 13 white, or 13 black
and 15 white. However, any 4× 7 rectangle will cover 14 squares of each colour. This proves that the seven
tiles cannot cover such a rectangle.

Problem 3.5. When the mathematician Euler was living there, the city of Königsburg used to have a network
of bridges like this:

People were discussing the following problem: is it possible to do a tour of the city which crosses each bridge
precisely once? Ideally the tour should start and end in the same place, but we do not insist on that.

Solution.
Interactive demo

Euler used a parity argument to show that no such tour is possible. Indeed, there are four sections of
land in the city: the north bank (N), the south bank (S), the western island (W) and the eastern island (E).
We will call these nodes. Nodes N, S and E are each connected to three bridges, and W is connected to five
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bridges: in each case, the number is odd. Now suppose we have a tour of the city that crosses each bridge
precisely once. Let P be a node that is neither the beginning nor the end of the tour. Every time we reach
P on one bridge, we must leave on a different bridge. Thus, if we visit P a total of n times, then we will
have crossed 2n of the bridges that touch P . However, P has an odd number of bridges, so we cannot have
crossed all of them, which is a contradiction.

Remark 3.6.
Video

The above solution can be generalised as follows. Suppose we have a network of nodes A1, . . . , An, with
some bridges between them. Let di be the number of bridges with one end at Ai. Suppose that there is a
tour which starts at Ap and ends at Aq. If i ̸= p, q then the same logic as before shows that di must be even.
However, we expect dp to be odd: we cross one bridge when we leave Ap as the first step of the tour, then
any further visits to Ap will involve crossing one bridge to arrive and another bridge to leave, giving an odd
number of bridges altogether. Similarly, we expect dq to be odd: throughout most of the tour we use bridges
in pairs, then we have one additional bridge for the last step of the tour when we arrive at Aq and do not
leave again. However: there is one exception to this picture: we could have a circular tour, which starts and
ends at the same node Ap. Then we have a bridge for the first step, a bridge for the last step, and pairs of
bridges in between, giving an even number altogether. In summary:

(a) If there is a circular tour crossing every bridge precisely once, then the numbers di are all even with
no exceptions.

(b) If there is a non-circular tour crossing every bridge precisely once, then the numbers di are all even
with precisely two exceptions.

Thus, if three of the di’s are odd then there cannot be a tour of the required type.

4. The pigeonhole principle

Remark 4.1. Let A be a finite set, with |A| = n say. Suppose we have a sequence a1, . . . , am of elements
of A, with m > n. As A only has n elements, it is clearly impossible for all the elements ai to be different.
Thus, we can find i < j with ai = aj .

Proposition 4.2 (Pigeonhole principle). Let A be a finite set, with |A| = m say. Suppose we have a list of
subsets P1, . . . , Pn (called pigeonholes) such that every element of A lies in one of these subsets. Suppose
that m > n (so the number of elements is greater than the number of pigeonholes). Then there exists i such
that |Pi| > 1.

Proof. List the elements of A as a1, . . . , am. Each element ai lies in some pigeonhole, so we can choose
ki ∈ [1, n] such that ai ∈ Pki

. We now have a sequence k1, . . . , km in [1, n]. As m > n, these numbers cannot
all be different, so we can choose i < j such that ki = kj = p say. This means that ai ∈ Pp and aj ∈ Pp, so
|Pp| > 1. □

Problem 4.3. Show that there are two people in the world with the same number of hairs.

Solution.
Interactive demo

Let N be the number of people in the world, so N ≃ 7.5× 109. Let M be the maximum number of hairs
that anyone has. A typical person has about 105 hairs, so it would be safe to assume that M < 106, and
certainly M is very much smaller than N . Let hi be the number of hairs on the i’th person, so hi ∈ [0,M ].
The sequence h1, . . . , hN is much longer than the size of the set [0,M ], so there must exist i < j such that
hi = hj as claimed.

As another way to say essentially the same thing, we can divide all people into pigeonholes H0, . . . ,HM ,
where Hr is the set of people with r hairs. The number of pigeonholes is smaller than the number of people,
so there must be some pigeonhole that contains two people. If Hr contains two people, then those two people
have the same number of hairs.

Proposition 4.4. Suppose that people p1, . . . , pn have a meeting, and some of them shake each others hand.
(No one shakes their own hand, and no pair of people shake hands more than once.) Then there are two
people who shake the same number of hands.
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Proof.
Interactive demo

Let di be the number of hands shaken by person pi. There are n− 1 people whose hands pi could shake,
so 0 ≤ pi ≤ n − 1. In other words, if we put N = {0, 1, . . . , n − 1}, then pi ∈ N . Note also that because
we start at zero, we have |N | = n. Now suppose, for a contradiction, that the numbers di are all different.
We now have n different numbers d1, . . . , dn all living in the set N of size n, so the numbers di must fill the
whole set N . In particular, we must have n− 1 = da for some a, and 0 = db for some b. Because da = n− 1
we see that person pa shakes everyone else’s hand. Because db = 0, we see that pb shakes no-one else’s hand.
This is a contradiction, because pa shakes pb’s hand. Thus, the numbers di cannot all be different, after all.
Thus, we have di = dj for some i ̸= j, so pi and pj shake the same number of hands. □

Problem 4.5. Let U be a set of 8 integers, with all the members of U between 1 and 32 (inclusive). Show
that there are two distinct disjoint subsets of U with the same sum.

Solution.
Interactive demo

As |U | = 8, the number of subsets of U is 28 = 256. Let these subsets be A1, A2, . . . , A256, and let sk be
the sum of the elements of Ak. Note that sk is the sum of 8 distinct terms, each of which is between 1 and
32. The largest possible sum of this form is 32 + 31 + 30 + 29 + 28 + 27 + 26 + 25 = 228. (We can just do
this addition by hand, or use the arithmetic progression rule: we have 8 equally spaced terms between 25
and 32, so the average is 25+32

2 and the total is 8 × 25+32
2 = 228.) We thus have 256 numbers s1, . . . , s256

lying in the set S = {0, . . . , 228}. As |S| = 229 < 256, there is not enough space for the numbers sk to all
be different. We can therefore find indices p ̸= q such that sp = sq. In other words, the sets Ap and Aq

are different, but they have the same sum. However, we have not yet solved the problem, because we were
supposed to find disjoint subsets. However, this is easily fixed. We put X = Ap \ Aq and Y = Aq \ Ap and
Z = Ap ∩Aq, so we have a Venn diagram as follows:

Ap Aq

X Z Y

It is then clear that X and Y are distinct, disjoint subsets with the same sum. (In a bit more detail, we can
let x be the sum of all elements of X, and similarly for y and z. We then have sp = x + z and sq = y + z.
We chose p and q such that sp = sq, and it follows that x = y as required.)

Remark 4.6. The above discussion is carefully phrased to work around the following finicky point: it is
possible for two sets X and Y to be disjoint but not distinct, if they both happen to be empty. However, in
the proof we have Ap ̸= Aq so at least one of X and Y must be nonempty, and they have the same sum, so
both must be nonempty.

Problem 4.7. Consider a sequence x1, . . . , xn of integers. Show that there is a consecutive subsequence
xp, xp+1, . . . , xq (for some p ≤ q) such that xp + · · ·+ xq is divisible by n.

Proof.
Interactive demo

For 0 ≤ i ≤ n we put

yi =

 i∑
j=1

xi

 (mod n) ∈ {0, 1, . . . , n− 1},

so y0 = 0 and y1 = x1 (mod n) and y2 = (x1 + x2) (mod n) and so on. This gives n+1 numbers y0, . . . , yn,
all lying in the set {0, . . . , n− 1}, which has size n. This means that the numbers yi cannot all be different,
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so we can find indices m < q such that ym = yq. Now note that

ym = x1 + · · ·+ xm (mod n)

yq = x1 + · · ·+ xm + xm+1 + · · ·+ xq (mod n)

yq − ym = xm+1 + · · ·+ xq (mod n).

We chose m and q so that ym = yq, and it follows that xm+1 + · · ·+ xq = 0 (mod n). In other words, if we
take p = m+ 1 ≤ q, we find that xp + · · ·+ xq is divisible by n. □

Problem 4.8. Suppose that I deposit money in my piggybank every day for 30 days. On 15 of the days I
deposit £1, and on each of the other 15 days I deposit £2. Given an integer k with 1 ≤ k ≤ 15, show that
there is a sequence of consecutive days during which I deposit precisely k pounds.

Remark 4.9. For small values of k, we can give a direct argument.

• For k = 1: There are 15 days on which I deposit £1, and any one of those days counts as a sequence
of length one during which I deposit precisely £1.

• For k = 2: There are 15 days on which I deposit £2, and any one of those days counts as a sequence
of length one during which I deposit precisely £2.

• For k = 3: At some point I must swap over between depositing £1 and £2. Thus, for some i, I
deposit £1 on day i, and £2 on day i + 1, or vice versa. Either way, {i, i + 1} is a sequence of
consecutive days over which I deposit precisely £3.

• For k = 4: As there are 15 days on which I deposit £2, I can certainly find a day i when I deposit
£2 that is not the beginning or end of the month, so 1 < i < 30. If I deposit £2 on day i− 1, then
{i− 1, i} is a sequence of consecutive days over which I deposit precisely £4. If I deposit £2 on day
i + 1, then {i, i + 1} is a sequence as required. If neither of these possibilities occur, then I must
have deposited £1 on days i− 1 and i+ 1, so {i− 1, i, i+ 1} is a sequence as required.

This is clearly becoming increasingly unwieldy, so it is better to take a less direct approach.

Solution.
Interactive demo

Let xi be the amount deposited on day i, so xi ∈ {1, 2} for i = 1, . . . , 30. Let yi be the total deposited
up to and including day i, so yi = x1 + · · · + xi. We also put y0 = 0. Note that y30 is the total amount
deposited over the whole month, which is 15× 1+ 15× 2 = 45. Because some money is deposited every day,
we have

0 = y0 < y1 < y2 < · · · < y30 = 45.

In particular, the numbers yi are all different, so the set Y = {y0, . . . , y30} has size 31. Now suppose we
are given k with 1 ≤ k ≤ 15. We put Z = {y0 + k, . . . , y30 + k}, and note that this also has size 31.
Because yi ≤ 45 and k ≤ 14 we have yi + k ≤ 60. We now see that Y and Z are both subsets of the set
N = {0, 1, . . . , 60}, which has size 61. If Y and Z were disjoint, we would have |Y ∪ Z| = |Y | + |Z| = 62,
which is impossible, as Y ∪ Z is a subset of N . It follows that Y and Z are not disjoint, so we can choose
m ∈ Y ∩Z. As m ∈ Y , we have m = yq for some q. As m ∈ Z, we have m = yp+k for some p, so yq = yp+k.
This means that we must have p < q, and

xp+1 + · · ·+ xq = (x1 + · · ·+ xq)− (x1 + · · ·+ xp) = yq − yp = k.

Thus, over the sequence of days {p+ 1, · · · , q}, I deposit precisely k pounds.

5. The inclusion-exclusion principle

Problem 5.1. Consider a sports club in which people can play tennis or squash. Some members play both
sports, some play only one, and some just drink at the bar. Suppose that 10 members play tennis (and maybe
squash as well), 12 members play squash (and maybe tennis as well), and 3 members play both sports. How
many members play at least one sport?

Solution.
Interactive demo
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Let Mt be the set of members who play tennis, and let Ms be the set of members who play squash. We
are given that |Mt| = 10 and |Ms| = 12 and |Ms ∩ Mt| = 3, and we need to find |Ms ∪ Mt|. For this, we
need to fill in the numbers in the following Venn diagram:

Mt Ms

1

2

3

7 3 9

Region 2 is Mt ∩ Ms, which has 3 elements, so we write 3 there. Regions 1 and 2 together make up Mt,
which has 10 elements, so we need 10−3 = 7 elements in region 1 to make the total correct. Regions 2 and 3
together make up Ms, which has 12 elements, so we need 12− 3 = 9 elements in region 3 to make the total
correct. Now Mt ∪ Ms consists of regions 1, 2 and 3, so it has 7 + 3 + 9 = 19 elements in total. In other
words, there are 19 members who play at least one sport.

Another way to describe the solution is as follows: we could just take |Mt|+ |Ms|, but that would count
the people who play both sports twice, once as members of Mt, and once more as members of Ms. To
compensate for this, we need to subtract the number of people who play both sports, which is |Mt ∩Ms|.
This gives

|Mt ∪Ms| = |Mt|+ |Ms| − |Mt ∩Ms| = 10 + 12− 3 = 19

as before.

Problem 5.2. Now suppose instead that we have a club that offers tennis (t), squash (s) and badminton
(b). We are given the following data:

10 members play t 5 members play t and s
15 members play s 4 members play t and b
12 members play b 3 members play s and b
2 members play t, s and b There are 40 members altogether.

How many members play no sport at all?

Solution.
Interactive demo

This time we will give a more algebraic explanation. We write M for the set of all members, and m = |M |.
We write Mt for the set of members who play t, and mt = |Mt| for the number of players who play t, and
similarly for Ms, Mtb and so on. The initial data is then as follows:

mt = 10 mts = 5

ms = 15 mtb = 4

mb = 12 msb = 3

mtsb = 2 m = 40.

Now let M∗
t be the set of members who play t and nothing else, and let M∗

ts be the set of members who play
t and s and nothing else, and so on. To complete the pattern, we put M∗

tsb = Mtsb, and we write M∗ for
the set of members who play no sport at all, so our problem is to find |M∗|. The people who play t can be
divided into four groups:

• Those that play t and nothing else
• Those that play t and s but not b
• Those that play t and b but not s
• Those that play t and s and b.
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From this we get Ms = M∗
s ∪M∗

ts ∪M∗
tb ∪M∗

tsb, and these sets do not overlap, so we get ms = m∗
s +m∗

ts +
m∗

tb +m∗
tsb. By a similar analysis, we get the following equations:

m∗
tsb = mtsb = 2

m∗
ts +m∗

tsb = mts = 5

m∗
tb +m∗

tsb = mtb = 4

m∗
sb +m∗

tsb = msb = 3

m∗
t +m∗

st +m∗
tb +m∗

tsb = mt = 10

m∗
s +m∗

st +m∗
sb +m∗

tsb = ms = 15

m∗
b +m∗

tb +m∗
sb +m∗

tsb = mb = 12

m∗ +m∗
t +m∗

s +m∗
b +m∗

ts +m∗
tb +m∗

sb +m∗
tsb = m = 40.

These equations are easily solved to give

m∗
tsb = mtsb = 2

m∗
ts = mts −mtsb = 5− 2 = 3

m∗
tb = mtb −mtsb = 4− 2 = 2

m∗
sb = msb −mtsb = 3− 2 = 1

m∗
t = mt −mts −mtb +mtsb = 10− 5− 4 + 2 = 3

m∗
s = ms −mts −msb +mtsb = 15− 5− 3 + 2 = 9

m∗
b = mb −mtb −msb +mtsb = 12− 4− 3 + 2 = 7

m∗ = m−mt −ms −mb +mts +mtb +msb −mtsb = 40− 10− 15− 12 + 5 + 4 + 3− 2 = 13.

In particular, we have m∗ = 13, so there are 13 members who play no sport; this answers the original
question.

Mt Ms

Mb

m∗
tsb = 2

m∗
ts = 3

m∗
tb = 2 m∗

sb = 1

m∗
t = 3 m∗

s = 9

m∗
b = 7

m∗ = 13

We now want to discuss the Inclusion-Exclusion Principle (IEP), which generalises the last two problems.
Suppose we have a finite set B, together with a family of subsets Ba ⊆ B for each a in some set A of labels.
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(For example, in Problem 5.2 we have a set B = M , together with subsets Ms, Mt and Mb, indexed by the
set A = {s, t, b} of available sports.) We put

B′ = {b ∈ B | b lies in at least one of the sets Ba}
B∗ = B \B′ = {b ∈ B | b lies in none of the sets Ba}.

In the common case where A = {1, . . . , n}, this can be written as

B′ = B1 ∪B2 ∪ · · · ∪Bn

B∗ = B \ (B1 ∪B2 ∪ · · · ∪Bn).

The IEP tells us about |B′| and |B∗|. To formulate it, we use the following notation. Given a subset I ⊆ A,
we put BI =

⋂
i∈I Bi. This means that

B{i} = Bi

B{i,j} = Bi ∩Bj

B{i,j,k} = Bi ∩Bj ∩Bk

and so on. For the case I = ∅, we interpret this as B∅ = B. We will often abbreviate the notation, by
writing Bijk for B{i,j,k} and so on.

Theorem 5.3. For B and Bi as above, we have

|B∗| =
∑
I⊆A

(−1)|I||BI |

|B′| =
∑
I ̸=∅

(−1)|I|+1|BI |.

In the case where A = {1, . . . , n}, this can be written as

|B∗| = |B| − |B1| − · · · − |Bn|+ |B12|+ · · ·+ |Bn−1,n| − · · · ± |B12···n|
|B′| = |B1|+ · · ·+ |Bn| − |B12| − · · · − |Bn−1,n|+ · · · ∓ |B12···n|

There is a single video covering the statement and proof of the IEP, together with two lemmas required
for the proof:

Video

.
The equation for |B∗| is called the negative form of the IEP, and the equation for |B′| is called the positive

form. Because B∗ = B \ B′ we have |B∗| = |B| − |B′|, which makes it easy to see that the two forms are
equivalent. For n = 2 and n = 3 the equations are as follows:

|B1 ∪B2| = |B1|+ |B2| − |B12|
|B \ (B1 ∪B2)| = |B| − |B1| − |B2|+ |B12|
|B1 ∪B2 ∪B3| = |B1|+ |B2|+ |B3| − |B12| − |B13| − |B23|+ |B123|
|B \ (B1 ∪B2)| = |B| − |B1| − |B2| − |B3|+ |B12|+ |B13|+ |B23| − |B123|.

Problem 5.1 is just an example of the positive IEP with n = 2. Problem 5.2 is an example of the negative
IEP with n = 3.

We will prove the IEP after some preliminary discussion.

Lemma 5.4. Let I be a finite set, and consider the sum s =
∑

J⊆I(−1)|J|. Then s = 1 if I is empty, and
s = 0 if I is not empty.

Proof. If I is empty, then the only term in the sum is for J = ∅, and that term is (−1)0 = 1, so s = 1.
Suppose instead that I ̸= ∅, and put n = |I| > 0. Then there are

(
n
k

)
possible choices of J with |J | = k, and

this gives s =
∑

k

(
n
k

)
(−1)k. This is just the binomial expansion of (1−1)n = 0n = 0, so s = 0. Alternatively,

we can choose an element a ∈ I, and put I ′ = I \ {a}. For every J ′ ⊆ I ′ we have a term (−1)|J
′| in s for
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J = J ′, and another term (−1)1+|J′| for J = J ′ ∪ {a}, and these terms cancel out. All the terms cancel in
pairs in this way, so we are left with s = 0. □

Definition 5.5. In the context of the IEP, for an element b ∈ B, we put

A⟨b⟩ = {a ∈ A | b ∈ Ba} ⊆ A.

For example, consider a member x of the club in Problem 5.2. Then A⟨x⟩ is just the set of sports that x
plays. For example, if x plays tennis and badminton but not squash, then A⟨x⟩ = {t, b}.

• Consider the set I = {t, s, b} and the corresponding set MI = Mtsb = Mt ∩ Ms ∩ Mb. Member x
does not lie in this set MI , because x does not play s. Here I ̸⊆ A⟨x⟩ = {t, b}.

• Consider instead the set I = {t, s} and the corresponding set MI = Mts = Mt∩Ms. Member x does
not lie in this set MI , because x does not play s. Here I ̸⊆ A⟨x⟩ = {t, b}.

• Now consider the set I = {t, b} and the corresponding set MI = Mtb = Mt ∩Mb. Member x does lie
in this set MI , because x does not play both t and b. Here I ⊆ A⟨x⟩ = {t, b}.

• Similarly, if I = {b} then x does lie in the set MI = Mb, and again I ⊆ A⟨x⟩.
• For an arbitrary subset I ⊆ A = {t, s, b} we find that x ∈ MI iff x plays all the sports in I iff
I ⊆ K⟨x⟩.

We record the obvious generalisation as a lemma:

Lemma 5.6. Suppose we have a family of subsets (Ba)a∈A as before, and an element b ∈ B, and a subset
I ⊆ A. Then b ∈ BI iff I ⊆ A⟨b⟩.

Proof. By definition BI =
⋂

i∈I Bi, so b ∈ BI iff b ∈ Bi for all i ∈ I. However, we have b ∈ Bi iff i ∈ A⟨b⟩,
by the definition of A⟨b⟩. Thus, we can say that b ∈ BI iff for all i ∈ I, we have i ∈ A⟨b⟩. This is clearly
equivalent to the condition I ⊆ A⟨b⟩. □

Lemma 5.7. A⟨b⟩ is empty iff b ∈ B∗.

Proof. We have i ∈ A⟨b⟩ iff b ∈ Bi. Thus A⟨b⟩ is empty iff the condition b ∈ Bi is false for all i, which means
that b lies in none of the sets Bi, which means that b ∈ B∗. □

Proof of Theorem 5.3. Put u =
∑

I⊆A(−1)|I||BI |. We need to prove that this is the same as |B∗|. We have

|BI | =
∑

b∈BI
1, so we can rewrite the definition of u as

u =
∑
I⊆A

∑
b∈BI

(−1)|I|.

Lemma 5.6 tells us that b ∈ BI iff I ⊆ A⟨b⟩, so we can regroup this sum as

u =
∑
b∈B

∑
I⊆A⟨b⟩

(−1)|I|.

Now Lemma 5.4 tells us that
∑

I⊆A⟨b⟩(−1)|I| is zero if A⟨b⟩ ≠ ∅, but is 1 if A⟨b⟩ = ∅. Using Lemma 5.7, we

therefore see that
∑

I⊆A⟨b⟩(−1)|I| is zero if b ̸∈ B∗, but is 1 if b ∈ B∗. We now have

u =
∑
b∈B∗

1 = |B∗|,

as required. This proves the negative form of the IEP. For the positive form, we note that

|B′| = |B| − |B∗| = |B| −
∑
I⊆A

(−1)|I||BI |.

The term for I = ∅ in the sum cancels out the extra term of |B| outside the sum. We can also bring the
minus sign inside the sum to get

|B′| =
∑
I ̸=∅

(−1)|I|+1|BI |.

□
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Definition 5.8. Let Sn be the set of all permutations of the set N = {1, . . . , n}, so |Sn| = n!. A derangement
of {1, . . . , n} is a permutation σ ∈ Sn with the property that for all i we have σ(i) ̸= i. We write Dn for the
set of derangements, so Dn ⊆ Sn. We also write pn = |Dn|/|Sn| (which is the probability that a randomly
chosen permutation is a derangement).

Example 5.9. This picture lists all 24 possible permutations of the set N = {1, 2, 3, 4}. For example, the
top right box contains 1432, which refers to the permutation sending 1, 2 3 and 4 to 1, 4, 3 and 2 respectively.
(In disjoint cycle notation, this would be (2 4).) The numbers 1 and 3 are sent to themselves, so they are
underlined. As some numbers are sent to themselves, this is not a derangement. However, in the bottom
right box we have the permutation 4321. This does not send anything to itself, so no numbers are underlined,
and we have a derangement. All the derangements are circled; there are 9 of them. Thus, the fraction of
derangements is p4 = 9/24 = 3/8 = 0.375.

1234 1243 1324 1342 1423 1432

2134 2143 2314 2341 2413 2431

3124 3142 3214 3241 3412 3421

4123 4132 4213 4231 4312 4321

Example 5.10. Suppose that n people arrive at a party, each wearing a hat. At the end of the party, no one
can remember which hat they brought, so they pick one up at random. This means that guest i picks up the
hat belonging to guest σ(i), for some randomly chosen permutation σ. This permutation is a derangement
iff no one gets the right hat. Thus, the probability that no one gets the right hat is pn. How does this change
as n increases? For any given guest, there are more hats to choose from, so the probability of getting the
right hat goes down. On the other hand, as there are more guests, there are more chances for at least one
guest to get the right hat. It is not obvious how these competing effects balance out, but the answer is given
by our next result.

Proposition 5.11. pn =
∑n

k=0(−1)k/k!, and this converges to e−1 ≃ 0.368 as n → ∞.

Proof. Interactive demo Interactive demo

Put

N = {1, . . . , n}
P = Sn = { all permutations of N}
Pi = {σ ∈ P | σ(i) = i} = { permutations that fix i}.

Note that a permutation is a derangement iff it lies in none of the sets Pi, so Dn = P ∗ in the usual notation
of the IEP. We therefore have

|Dn| = |P ∗| =
∑
I⊆N

(−1)|I||PI |

pn = n!−1|Dn| =
∑
I⊆N

(−1)|I||PI |/n!.

Here PI is the set of permutations σ that fix all the elements of I, but are free to permute the remaining
elements of N \ I in any way. If |I| = k we have |N \ I| = n−k so there are (n−k)! possible permutations of
N \ I. This means that |PI | = (n− k)!. On the other hand, there are

(
n
k

)
possible choices of I with |I| = k.

Putting this together, we get

pn =

n∑
k=0

(
n

k

)
(−1)k

(n− k)!

n!
.
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However, we also have (
n

k

)
(n− k)!

n!
=

n!

k!(n− k)!

(n− k)!

n!
=

1

k!
,

so our previous expression simplifies to pn =
∑n

k=0(−1)k/k! as claimed. As n tends to infinity, this converges
to

∑∞
k=0(−1)k/k!, which is e−1 by the standard Taylor series for ex. □

Problem 5.12. Of the numbers 0, 1, . . . , 41, how many are coprime with 42?

Solution.
Interactive demo

Put D = {0, . . . , 41}, and let U be the subset of numbers that are coprime with 42. We need to find |U |.
Put P = {2, 3, 7}, which is the set of primes that divide 42. For any p ∈ P , put

Dp = {i ∈ D | i is divisible by p}.

In the standard notation for the IEP, we have U = D∗, and so |U | =
∑

I⊆P (−1)|I||DI |. We therefore need

to understand |DI |. Let qI be the product of the primes in I (to be interpreted as qI = 1 in the case I = ∅).
We note that qI divides 42, and DI is the set of multiples of qI in D, so DI = {k qI | 0 ≤ k < 42/qI} and
|DI | = 42/qI . We now have

|U | = 42
∑
I⊆P

(−1)I

qI
= 42

(
1− 1

2
− 1

3
− 1

7
+

1

2× 3
+

1

2× 7
+

1

3× 7
− 1

2× 3× 7

)
.

It is not hard to see that this factors as

|U | = 42

(
1− 1

2

)(
1− 1

3

)(
1− 1

7

)
= 12.

Alternatively, we could say that the proportion of coprime numbers is |U |/|D| = (1− 1
2 )(1−

1
3 )(1−

1
7 ) = 2/7.

The following more general statement can be proved in the same way:

Proposition 5.13. Consider an integer m > 1, and let P be the set of primes that divide m. Put D =
{0, 1, . . . ,m− 1}, and let x be the proportion of numbers in D that are coprime with m. Then

x =
∏
p∈P

(1− p−1). □

6. Matching problems

Video

A large part of this course will be about matching problems. A typical example is as follows. We have
a set J of jobs, and a set P of people. Each person is qualified to do some subset of the jobs. Ideally, we
would like to give every person a job that they are qualified to do, in such a way that every person has
exactly one job, and every job is filled. Of course this is only possible if the number of jobs is the same as
the number of people. If there are more people than jobs, we can still hope to fill every job, leaving some
people unemployed. This still might not be possible, if we have a large number of difficult jobs, and not
many highly skilled people. If a perfect matching is not possible, we might try to find partial matchings that
fill as many jobs as possible. We might also ask how many different partial matchings are possible.

As well as the basic problem mentioned above, there are a number of possible variants. We could have jobs
that need a team of people rather than just a single person. We could have a subset of enthusiastic people
who really want a job, and we could try to organise the matching so that all of them are employed. We could
try to account for the fact that some people are more qualified than others, rather than just distinguishing
qualified people from unqualified people.

We can also apply the same mathematical ideas in different contexts. Instead of allocating people to
jobs, we could allocate A-level students to university places, or junior doctors to hospitals, or processes to
processors in a multiprocessor computer. We could also match romantic partners to each other; some of
the earliest mathematical literature on matching was written in terms of this problem. Moreover, there are
many purely abstract mathematical applications of the same theory.
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Definition 6.1. A matching problem consists of finite sets A and B, together with a subset E ⊆ A×B. A
row in A × B is a set of the form {a} × B, and a column is a set of the form A × {b}. A partial matching
for E is a subset M ⊆ E that contains at most one element in each row, and at most one element in each
column. We say that M is row-full if it meets every row, and column-full if it meets every column.

Example 6.2. A could be a set of people, B could be a set of jobs, and E could be the set of pairs (a, b) such
that person a is qualified for job b. Each person a gives a row {a} ×B, and the intersection ({a} ×B) ∩ E
tells us the set of jobs that person a is qualified to do. Each job b gives a column A×{b}, and the intersection
(A× {b}) ∩ E tells us the set of people that are qualified to do job b. Given a partial matching M ⊆ E, we
can allocate job b to person a for every pair (a, b) ∈ M . Part of the definition of a partial matching says
that M ⊆ E; this ensures that we only allocate people to jobs that they are qualified to do. Another part
of the definition says that every row contains at most one element of M ; this ensures that no one has more
than one job. The last part of the definition says that every column contains at most one element of M ; this
ensures that we do not give the same job to more than one person. The matching M is row-full iff everyone
gets a job, and it is column-full iff every job is filled.

Example 6.3. A and B could be two disjoint sets of people, so that everyone in A wants to marry someone
from B and vice-versa. Then E could be the set of pairs (a, b) such that a and b would be content to marry
each other. A partial matching then gives a set of disjoint compatible couples. The matching is row-full if
everyone in A has a partner, and column-full if everyone in B has a partner.

Example 6.4. Consider again a sports club as in Problem 5.2. Suppose that the committee is supposed to
have a Tennis Officer, a Squash Officer and a Badminton Officer. These are required to be three different
people, who must be players of the relevant sport. To choose these officers, we can consider an appropriate
matching problem. We take P to be the set of members and S to be the set of sports. We then put

E = {(p, x) ∈ P × S | person p plays sport x }.
Suppose we have a partial matchingM ⊆ E that is column-full. ThenM must have the form {(p, t), (q, s), (r, b)}
where p is a tennis player, q is a squash player and r is a badminton player, and p, q and r are all different.
Thus, we could make p the Tennis Officer, q the Squash Officer and r the Badminton Officer.

Remark 6.5. We can reformulate the description of a matching problem as follows.

• For each a ∈ A we put Ra = {b ∈ B | (a, b) ∈ E}, and call this the a’th row set for E.
• For each b ∈ B we put Cb = {a ∈ A | (a, b) ∈ E}, and call this the b’th column set for E.

We note that

E = {(a, b) | b ∈ Ra} = {(a, b) | a ∈ Cb}
Ra = {b | (a, b) ∈ E} = {b | a ∈ Cb}
Cb = {a | (a, b) ∈ E} = {a | b ∈ Ra}.

Thus, if we know the row sets we can determine the column sets and the set E. Similarly, if we know the
column sets then we can determine the row sets and the set E. In the job allocation context of Example 6.2,
we just have

Rp = { jobs that person p is qualified to do } ⊆ J

Cj = { people who are qualified to do job j } ⊆ P.

Example 6.6.
Interactive demo

We can give a more specific example of a job allocation problem as follows. We have a set P of people
called Ann, Bob, Cath, Dave and Ella, abbreviated a,b,c,d,e. We have a set J of jobs: librarian, musician,
nurse, optician, pilot, abbreviated l,m,n,o,p. A typical element of P × J is the pair (Bob,nurse) = (b, n); we
will usually just write this as bn for brevity. We now need to specify the set

E = {(x, y) | person x is qualified for job y }.
We take

E = {al, am, ap, bl, bn, bo, cl, dm, dn, do, dp, ea, eo, ep}.
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For example, the pair ap is an element of E, indicating that Ann is qualified to be a pilot. The pair cm is
not an element of E, indicating that Cath is not qualified to be a musician.

It is generally more convenient to indicate this information graphically, rather than listing the elements
of E explicitly. This can be done in several different ways. In the left hand picture below, the positions in
E are marked by white squares, but the positions not in E are marked by black squares. For example, the
top left position is al, which is an element of E, indicating that Ann is qualified to be a librarian, so the to
left square is white. The middle square is cn, which is not in E, indicating that Cath is not qualified to be a
nurse, so the middle square is black. We call this picture the chessboard diagram for the matching problem.

The middle picture is essentially the same as the left hand one, except that we have 1’s (instead of white
squares) for the positions in E, and 0’s (instead of black squares) for the positions that are not in E. We
call this the incidence matrix for the matching problem.

In the right hand picture, we have a red circle for each person, a blue square for each job, and a green line
for each element of E. For example, there is a green line between a and m, reflecting the fact that am ∈ E,
or that Ann is qualified to be a musician. There is no green line between b and p, reflecting the fact that
bp ̸∈ E, or that Bob is not qualified to be a pilot. We call this picture the incidence graph.

a

b

c

d

e

l m n o p

a

b

c

d

e

l m n o p

1 1 0 0 1

1 0 1 1 0

1 0 0 0 0

0 1 1 1 1

1 0 0 1 1

a b

c

d

e

l

m n

op

As yet another way to represent the same information, we can list the row sets and the column sets:

Ra = {l,m, p} Cl = {a, b, c, e}
Rb = {l, n, o} Cm = {a, d}
Rc = {l} Cn = {b, d}
Rd = {m,n, o, p} Co = {b, d, e}
Re = {l, o, p} Cp = {a, d, e}.

The fact that Rb = {l, n, o} means that Bob is qualified to be a librarian, nurse or optician, but not to do any
other job. We can read this off by looking for white squares in the second row of the chessboard diagram,
or by looking for 1’s in the second row of the incidence matrix, or by looking for nodes in the incidence
graph that are connected by an edge to b. The fact that Cp = {a, d, e} means that Ann, Dave and Ella (and
nobody else) are qualified to be pilots. We can read this off by looking for white squares in the last column
of the chessboard diagram, or by looking for 1’s in the last column of the incidence matrix, or by looking for
nodes in the incidence graph that are connected by an edge to p.

Example 6.7. We next discuss graphical representation of partial matchings. Recall that a partial matching
is a subset M ⊆ E that has at most one element in any row, and at most one element in any column. The
condition M ⊆ E means that M corresponds to a subset of the white squares in the chessboard diagram.
We can mark this subset by placing a rook on each of the relevant squares. Recall the usual rules of chess:
two rooks can attack each other horizontally if they lie in the same row, and they can attack each other
vertically if they lie in the same column. Thus, the row and column conditions for a partial matching just
say that none of the rooks can attack each other.
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For instance, we can consider again the matching problem from Example 6.6. Take M = {ap, cl, dn}.
This can be shown graphically as follows:

a

b

c

d

e

l m n o p

a

b

c

d

e

l m n o p

1 1 0 0 1

1 0 1 1 0

1 0 0 0 0

0 1 1 1 1

1 0 0 1 1

a b

c

d

e

l

m n

op

In the chessboard diagram, we have placed rooks in positions ap, cl and dn. The rooks are all in white
squares and cannot attack each other, so this is a valid partial matching. In the incidence matrix, we have
circled the entries in positions ap, cl and dn. All the circled entries are 1’s, and no row contains more than
one circle, and no column contains more than one circle. This is another way to express the fact that we
have a valid partial matching. In the incidence graph, we have coloured the edges ap, cl and dn orange, and
left them solid, while making the other edges dotted. The fact that the rooks cannot attack each other is
reflected by the fact that the solid edges are disjoint.

7. Rook polynomials

In this section we will consider some matching problems, which will be represented by their chessboard
diagrams. We will try to count the number of partial matchings of various sizes. We will represent partial
matchings by placements of non-challenging rooks, as in Example 6.7.

Video

Problem 7.1. Consider the matching problem E with the following chessboard diagram:

a

b

c

1 2 3

(so E = {a1, a2, b1, b2, b3, c1, c2, c3} ⊂ {a, b, c} × {1, 2, 3}).
(a) How many ways are there of placing one rook?
(b) How many ways are there of placing two non-challenging rooks?
(c) How many ways are there of placing three non-challenging rooks?

Solution.
Interactive demo

(a) There are 8 white squares, and thus 8 ways of placing one rook. We can list them as follows:

a1, a2, b1, b2, b3, c1, c2, c3.

(b) By inspection, there are 14 ways of placing two non-challenging rooks. They can be listed as follows:

a1b2, a1b3, a1c2, a1c3, a2b1, a2b3, a2c1, a2c3, b1c2, b1c3, b2c1, b2c3, b3c1, b3c2.
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(c) If we place three non-challenging rooks, then there must be one in each row. There are two choices
for where to place the rook in row a. Then there are again two choices for where to place the rook in
row b, because it is not allowed to go directly underneath the rook in row a. We have now blocked
out two of the squares in row c, leaving only one possible choice for the third rook. This gives
2× 2× 1 = 4 ways of placing three non-challenging rooks. We can list them as follows:

a1b2c3, a1b3c2, a2b1c3, a2b3c1.

Alternatively, we can display the chessboard diagrams:

a1b2c3 a1b3c2 a2b1c3 a2b3c1

(d) It is clearly impossible to place more than three non-challenging rooks. By convention, we also say
that there is one way of placing no rooks.

Definition 7.2. Let B ⊆ {1, . . . , n}2 be a matching problem (typically represented by an n× n chessboard
diagram, with the elements of E coloured white, and the elements not in E coloured black). We write Ck(B)
for the set of partial matchings M ⊆ E with |M | = k. (Such a partial matching corresponds to a placement
of k non-challenging rooks on B.) We write ck(B) = |Ck(B)|, so ck(B) is the number of partial matchings
of size k, or the number of ways of placing k non-challenging rooks on B. We note that when k > n we have
Ck(B) = ∅ and ck(B) = 0, and we put

rB(t) =

n∑
k=0

ck(B)tk.

We call this the rook polynomial for B.

Remark 7.3. There is only one way of placing no rooks, so c0(B) = 1. The number of ways of placing one
rook is just the number of white squares in B, which will write as |B|, so c1(B) = |B|. This means that

rB(x) = 1 + |B|x+ · · · .
The higher coefficients are harder to calculate. In Problem 7.1, we showed that c2(B) = 14 and c3(B) = 4
and ck(B) = 0 for k > 3, so

rB(x) = 1 + 8x+ 14x2 + 4x3.

Remark 7.4. It is clear that rotating or reflecting a board does not affect the set of non-challenging rook
placements, and so does not affect the rook polynomial.

Example 7.5. Let Ln be the full 1× n board, with all squares white:

L6 =

It is clearly impossible to place more than one rook on Ln without the rooks challenging each other, so we
just have rLn

(x) = 1 + nx.

Example 7.6. Put Dn = {(1, 1), (2, 2), . . . , (n, n)}, so the corresponding chessboard diagram has white
squares on the diagonal and black squares everywhere else.

D6 =
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It is clearly impossible for two rooks placed anywhere on Dn to challenge each other. Thus, Ck(Dn) just
consists of all subsets of size k in Dn, which means that ck(Dn) =

(
n
k

)
. This gives

rDn
(x) =

n∑
k=0

(
n

k

)
xk = (1 + x)n.

Example 7.7.
Interactive demo

Consider a full 3× 3 board B, with all squares white:

a

b

c

1 2 3

(a) There are 9 squares, and thus 9 ways of placing one rook, so c1(B) = 9. We can list them as follows:

C1(B) = {a1, a2, a3, b1, b2, b3, c1, c2, c3}.

(b) If we place two non-challenging rooks, then they must be in different rows, leaving the third row
empty. There are three ways to choose the empty row. Then there are three ways place a rook in
the upper non-empty row. This blocks off one of the spaces in the lower non-empty row, leaving
only two choices for where to place the second rook. Altogether, this gives 3 × 3 × 2 = 18 ways of
placing two non-challenging rooks, so c2(B) = 18. We can list them as follows:

C2(B) = {a1b2, a1b3, a1c2, a1c3, a2b1, a2b3, a2c1, a2c3, a3b1,
a3b2, a3c1, a3c2, b1c2, b1c3, b2c1, b2c3, b3c1, b3c2 }.

(c) If we place three non-challenging rooks, then there must be one in each row. There are three choices
for where to place the rook in row a. Then there are only two choices for where to place the rook in
row b, because it is not allowed to go directly underneath the rook in row a. We have now blocked
out two of the squares in row c, leaving only one possible choice for the third rook. This gives
3× 2× 1 = 6 ways of placing three non-challenging rooks, so c3(B) = 6. We can list them as follows:

C3(B) = {a1b2c3, a1b3c2, a2b1c3, a2b3c1, a3b1c2, a3b2c1}.

Alternatively, we can display the chessboard diagrams:

a1b2c3 a1b3c2 a2b1c3 a2b3c1 a3b1c2 a3b2c1

We now see that

rB(x) = 1 + 9x+ 18x2 + 6x3.

Example 7.8.
Interactive demo

Now consider the following board B:
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a

b

c

d

1 2 3 4

The possible rook placements are as follows:

• C0(B) = {∅} so c0(B) = 1.
• C1(B) = {a3, b1, b2, c1, c2, d4} so c1(B) = 6.
• C2(B) = {a3b1, a3b2, a3c1, a3c2, a3d4, b1c2, b1d4, b2c1, b2d4, c1d4, c2d4} so c2(B) = 11.
• C3(B) = {a3b1c2, a3b1d4, a3b2c1, a3b2d4, a3c1d4, a3c2d4, b1c2d4, b2c1d4} so c3(B) = 8.
• C4(B) = {a3b1c2d4, a3b2c1d4} so c2(B) = 2.

(Later, we will discuss a systematic method to construct these lists.) From this we see that the rook
polynomial is

rB(x) = 1 + 6x+ 11x2 + 8x3 + 2x4.

We next generalise Example 7.7.

Definition 7.9. We write Fmn for the full m × n board (with all squares white). Thus, as a set, we just
have

Fmn = {1, . . . ,m} × {1, . . . , n} = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

We also write Fn = Fnn, so Fn is the full n× n square board.

Proposition 7.10. Consider Cn(Fn), which is the set of ways of placing n non-challenging rooks on the
full n× n board. Then this set can be identified with the set of permutations of {1, . . . , n}, so cn(Fn) = n!.

Proof.
Interactive demo

Any element of Cn(B) is a placement of n non-challenging rooks. As the rooks do not challenge each
other, we have at most one rook per row. As we have n rooks and only n rows, there must be a rook in every
row. Let σ(i) be the horizontal position of the rook in row i, so σ is a function from the set N = {1, . . . , n}
to itself. Similarly, each column must contain precisely one rook. Let τ(j) be the vertical position of the rook
in column j. It is then easy to see that the functions σ and τ are inverse to each other, so σ is a bijection,
or in other words a permutation. Conversely, if we are given a permutation σ then we can place a rook in
position (i, σ(i)) for i = 1, . . . , n, and this gives us n non-challenging rooks. □

Proposition 7.11. Consider the full m× n board, denoted by Fmn. Then for 0 ≤ k ≤ min(m,n) there are
precisely

(
m
k

)(
n
k

)
k! ways of placing k non-challenging rooks on Fmn, so ck(Fmn) =

(
m
k

)(
n
k

)
k!. Thus, the rook

polynomial is

rFmn
(x) =

min(m,n)∑
k=0

(
m

k

)(
n

k

)
k!xk.

In particular, for a square board of size n× n we have

rFn
(x) =

n∑
k=0

(
n

k

)2

k!xk.
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Example 7.12. For the case m = n = 3, the claim is that

rB(x) =

(
3

0

)2

0! +

(
3

1

)2

1!x+

(
3

2

)2

2!x2 +

(
3

3

)
3!x3

= 1 + 9x+ 18x2 + 6x3,

which agrees with Example 7.7.

Proof.
Interactive demo

If we have k non-challenging rooks, then they must lie in k different rows. There are
(
m
k

)
ways of choosing

the rows in which the rooks will appear. Similarly, the rooks must lie in k different columns. There are
(
n
k

)
ways of choosing the columns in which the rooks will appear. Now suppose we have chosen the rows and
columns. If we ignore all the other rows and columns, we are just left with a k× k board, on which we need
to place k non-challenging rooks. There are k! ways to do this, by Proposition 7.10. Thus, we have

(
m
k

)(
n
k

)
k!

possibilities altogether. □

Problem 7.13. Let B be an n×n board in which the main diagonal squares are black and all other squares
are white. The case n = 5 is shown below.

How many ways are there of placing n non-challenging rooks on this board?

Solution.
Interactive demo

This is a problem that we have already solved, but slightly disguised. For any permutation σ of the set
N = {1, . . . , n} we have a rook placement with rooks in positions (i, σ(i)). However, we want to ensure
that no rooks are on the black squares, which are in positions (i, i). Thus, we need to have σ(i) ̸= i for
all i. This is precisely the condition for σ to be a derangement, as introduced in Definition 5.8. Thus, the
number of ways of placing n non-challenging rooks is the same as the number of derangements, which is
n!

∑n
k=0(−1)k/k! ≃ n!e−1 by Proposition 5.11.

Problem 7.14. Suppose we have people A,B,C and D, and jobs a, b, c and d, with qualifications as follows:

• a can be done by A or D;
• b can be done by B or D;
• c can be done by B or C;
• d can be done by A or B.

Is it possible to solve the job allocation problem, and if so, in how many ways?

Solution. The chessboard diagram for this matching problem is as follows:
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A

B

C

D

a b c d

The job allocation problem is equivalent to the problem of placing four non-challenging rooks on this board.
This means that we must have a rook in each row. The rook in row C must be at Cc, and this means that
the rook in row B cannot be at Bc, so it must be at Bb or Bd.

• Suppose we place a rook at Aa. This blocks Da, so the rook in row D must be at Db. Now Bb
and Bc are blocked by Db and Cc, so the rook in row B must be at Bd. This gives a full matching
AaBdCcDb.

• Suppose instead that we place a rook at Ad. This blocks Bd, and Bc is also blocked by Cc, so the
rook in row B must be at Bb. Now Db is blocked by Bb, so the rook in row D must be at Da. This
gives a full matching AdBbCcDa.

From this we see that there are precisely two full matchings. Equivalently, there are precisely two ways to
allocate the jobs subject to the usual rules: each person should have precisely one job, and each job should
be done by precisely one person.

We will next give two examples where we can show that an interesting problem is equivalent to a rook
placement problem. However, we will not yet solve the resulting rook placement problems. Instead, we will
first develop some general techniques, which will make the task easier.

Problem 7.15. One version of the game of Snap works as follows. There are two players, each of whom
has a full pack of 52 cards. At each turn, both players take a card from the top of their pack. If the two cards
have the same value (for example, they are both kings or both sevens) then that counts as a snap, and the
game ends. Of course, it could happen that the game continues for 52 turns and the players play all of their
cards but still no snap has happened. What is the probability of this?

Solution.
Interactive demo

For simplicity, we will first consider the case where the decks just have the aces, kings, queens and jacks,
so there are only 16 cards altogether. We will number the cards as 1, . . . , 16, with cards 1−4 being the aces,
cards 5 − 8 being the kings, 9 − 12 being the queens and 13 − 16 the jacks. We will analyse the problem
using the following board:
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A♣

A♥

A♦

A♠

K♣

K♥

K♦

K♠

Q♣

Q♥

Q♦

Q♠

J♣

J♥

J♦

J♠

A♣ A♥ A♦ A♠ K♣K♥ K♦ K♠ Q♣Q♥ Q♦ Q♠ J♣ J♥ J♦ J♠

Squares are coloured black if the corresponding row and column markers have the same value; they are
coloured white if the row and column markers have different values. For example, the (K♣,K♥) square is
black (because the two markers are both kings) but the (Q♥,J♠) square is white.

We will assume for simplicity that the first player’s pack is unshuffled, so cards 1 to 16 appear in order,
but that the second player’s pack is shuffled randomly. (We leave it as an exercise to understand why this
simplifying assumption does not really change anything.) Let σ(i) be the card in position i in the second
player’s pack, so σ is a random permutation, and cards i and σ(i) get played at the same time. This
permutation can be represented in the usual way by placing 16 rooks on the board, with the i’th rook at
position (i, σ(i)). Suppose, for example, that σ(6) = 3, so cards 6 and 3 get played together. Card 6 is K♥,
and card 3 is A♦. These have different values, so this is not a snap. This corresponds to the fact that the
square (6, 3) is white. Suppose, for another example, that σ(9) = 11, so cards 9 and 11 are played together.
Card 9 is Q♣ and card 11 is Q♦, so this is a snap. This corresponds to the fact that the square (9,11) is
black. Thus, our game has a snap if there is a rook on a black square, but there is no snap if all the rooks
are on white squares. Thus, our main task is to calculate the number of ways of placing 16 non-challenging
rooks using the white squares only. We will return to this calculation when we have developed a bit more
theory.

Problem 7.16. Suppose we have a dinner party with ten guests, who are to be seated at a round table.
There are five married couples, each consisting of a man and a woman. We want to arrange the seating so
that the men alternate with the women, and no one sits next to their spouse. How many ways are there to
do this? (This is sometimes called the ménage problem.)

Solution.
Interactive demo

We label the seats as follows:
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A

B

CD

E

1

2

3

4

5

The first choice to make is whether the women get the seats with letters or the seats with numbers; this will
give an overall factor of two. For the rest of the analysis, we will assume that the women get the letters.
Next, there are 5! = 120 ways to assign the 5 women to seats A, . . . , E. Now suppose we have seated the
women, and we want to seat the men. We will refer to the woman in seat A as woman A, and to her husband
as man A, and so on. Now man A is not supposed to sit next to his wife, so he can sit in seats 2, 3 or 4
but not 1 or 5. Similarly, man B can sit in seats 3, 4 or 5, and man C can sit in seats 4, 5 or 1, and so on.
These rules can be represented by the following chessboard diagram:

A

B

C

D

E

1 2 3 4 5

Our seating problem is equivalent to the problem of finding a full matching for this board. (A rook in
position B4 corresponds to putting man B in seat 4, for example.) We will show later that there are 13 such
matchings. This means that there are 2× 120× 13 = 3120 possible solutions to the original problem.

8. Reduction theorems

We will now introduce two results that allow us to calculate the rook polynomial of a board in terms of
rook polynomials of smaller or simpler boards.

Theorem 8.1. Let B be an n × n board, in which some squares may be blocked off. Let s be an unblocked
square. Let C be the same as B, except that s is blocked off. Let D be the same as B, except that s’s row
and column are removed. Then for k > 0 we have ck(B) = ck(C) + ck−1(D), and so

rB(x) = rC(x) + x rD(x).

Proof.
Interactive demo
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The constant term on both sides is equal to one. Consider instead the coefficients of xk, where k > 0.
The coefficient in rB(x) is ck(B), which is the number of ways of placing k non-challenging rooks on B.
We can write this as ck(B) = p + q, where p is the number of placements that do not have a rook at s,
and q is the number of placements that do have a rook at s. To place k rooks on B without using s is the
same as to place k rooks on C, so p = ck(C). To place k rooks on B including s is the same as to place a
rook at s, and then place k − 1 more rooks on B, avoiding s’s row and column. This in turn is the same
as placing k − 1 rooks on D, so we have q = ck−1(D). Note also that ck−1(D) is the coefficient of xk−1 in
rD(x), which is the same as the coefficient of xk in x rD(x). The equation ck(B) = p + q now tells us that
ck(B) = ck(C) + ck−1(D), or that the coefficients of xk are the same in rB(x) and rC(x) + x rD(x). As this
works for all k, we have rB(x) = rC(x) + x rD(x) as claimed. □

Remark 8.2. We say that C is the result of blocking s, and that D is the result of stripping s.

Example 8.3. Boards B, C and D could be as follows:

s

B C D

As all squares in D are white, Proposition 7.11 gives

rD(x) =

4∑
k=0

(
4

k

)2

k!xk = 1 + 16x+ 72x2 + 96x3 + 24x4.

Next, in C the middle row is fully blacked out, and it is easy to see that this makes it irrelevant, so C is
equivalent to a 4 × 5 board in which all squares are white. We can therefore use Proposition 7.11 again to
get

rC(x) =

4∑
k=0

(
4

k

)(
5

k

)
k!xk = 1 + 20x+ 120x2 + 240x3 + 120x4.

The theorem now gives

rB(x) = rC(x) + x rD(x) = 1 + 21x+ 136x2 + 312x3 + 216x4 + 120x5.

Example 8.4. It is interesting to see how Theorem 8.1 works out in some trivial cases. First consider the
linear board Ln from Example 7.5, so Ln just consists of n blank squares in a row. Blocking any square gives
Ln−1, and stripping any square gives the empty board, so Theorem 8.1 gives rLn(x) = rLn−1(x) + x r∅(x).
Even for the empty board, there is a unique way of placing no rooks, so we have r∅(x) = 1, so rLn

(x) =
rLn−1

(x) + x. From this it follows inductively that rLn
(x) = 1 + nx (which is already obvious from the

definitions, as we remarked in Example 7.5.)
Now consider the diagonal board Dn from Example 7.6. Here blocking any square gives Dn−1, and

stripping any square also gives Dn−1. Thus, Theorem 8.1 gives rDn(x) = (1 + x)rDn−1(x). From this it
follows inductively that rDn

(x) = (1+ x)n (which is already obvious from the definitions, as we remarked in
Example 7.6.)

Definition 8.5. Let B be an n× n board with some squares blocked off, as before. Suppose that the set of
unblocked squares has been split into two parts C and D, so that B = C ∪D and C ∩D = ∅. We say that
C and D are fully disjoint if

(a) There is no row that contains a square from C and also a square from D; and
(b) There is no column that contains a square from C and also a square from D.
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Example 8.6.
Interactive demo

Consider the board B as shown on the left below.

B

C C C

C C

C C C

D D

D

C D

We can divide B into disjoint subboards C and D, as shown by the second picture. Note that:

(a) Rows 1, 3 and 5 contain only C’s, whereas rows 2 and 4 contain only D’s.
(b) Columns 1, 2 and 5 contain only C’s, whereas columns 3 and 4 contain only D’s.

This shows that C and D are fully disjoint.

Theorem 8.7. Let B be an n × n board with some squares blocked off, as before. Suppose that B can be
split into two subboards C and D, which are fully disjoint. Note that C and D can be regarded as boards in
their own right, so they have rook polynomials rC(x) and rD(x). Then

rB(x) = rC(x) rD(x).

(We call this method factoring.)

Proof. To place k rooks in B, we first need to decide how many of them will be in C, and how many in D.
If we place i rooks in C, then there will be k − i in D. There are ci(C) ways of placing i non-challenging
rooks in C, and ck−i(D) ways of placing k− i non-challenging rooks in D. Moreover, the rooks in C cannot
challenge those in D or vice-versa, because of conditions (b) and (c) in the theorem. Thus, we can put the
two sets of rooks together, and we always have a set of k non-challenging rooks in B. From this we see that
there are ci(C) × ck−i(D) ways of placing k non-challenging rooks in B, with precisely i of them in C. By

considering all possible values of i, we get ck(B) =
∑k

i=0 ci(C)ck−i(D). This in turn gives

rB(x) =
∑
k≥0

ck(B)xk =
∑
k≥0

k∑
i=0

ci(C)ck−i(D)xk

=

∑
i≥0

ci(C)xi

∑
j≥0

cj(D)xj

 = rC(x)rD(x).

□

Example 8.8. Consider again the board B from example 8.6

B

C C C

C C

C C C

D D

D

C D
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Boards C and D are small enough that we can calculate the rook polynomials by inspection:

rC(x) = 1 + 8x+ 14x2 + 4x3

rD(x) = 1 + 3x+ x2.

Theorem 8.7 therefore gives

rB(x) = rC(x)rD(x) = (1 + 8x+ 14x2 + 4x3)(1 + 3x+ x2)

= 1 + 11x+ 39x2 + 54x3 + 26x4 + 4x5.

Problem 8.9. Consider the following table, in which all the entries are in the range 1-5:

1 2 3 4 5

2 4 5 3 1

4 3 1 5 2

You can check that there are no repeats in any row or column. How many ways are there of adding a fourth
row, so that there are still no repeats in any row or column?

Solution.
Interactive demo

We start by extending the table a little:

a b c d e

1 2 3 4 5

2 4 5 3 1

4 3 1 5 2

{3, 5} {1, 5} {2, 4} {1, 2} {3, 4}

We want to add new row, in such a way that there are no repeats in any row or column. Column a already
contains 1, 2 and 4, so the new entry cannot be any of those, so it must be in the set {3, 5}. Column b
already contains 2, 4 and 3, so the new entry cannot be any of those, so it must be in the set {1, 5}. In the
same way, we see that the new entries in columns c, d and e must be taken from the sets {2, 4}, {1, 2} and
{3, 4}, as indicated in the diagram. This gives us a matching problem, with chessboard diagram as shown on
the left below. Adding a new row is equivalent to solving the rook problem for this board. For example, one
possible solution is to place rooks at a3, b5, c2, d1, e4, as shown in the middle picture. This indicates that
we can legitimately add a new row to our table, with column a containing 3, column b containing 5, column
c containing 2, column d containing 1 and column e containing 4. The result is shown in the right-hand
picture.

a

b

c

d

e

1 2 3 4 5

a

b

c

d

e

1 2 3 4 5
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We want to find the number of ways to add a new row, which is the same as the number of ways of placing 5
non-challenging rooks on the board, which is the coefficient of x5 in the rook polynomial. As an illustration
of the relevant methods, we will in fact calculate the full rook polynomial, by repeatedly using Theorems 8.1
and 8.7.

The following picture shows boards B1, . . . , B15. We write rk(x) for the rook polynomial of board Bk.
Our problem is to calculate r1(x).

1 2 3

P P

Q

Q 4

P P

5

Q

Q

6 R

R R

S

S S

7

R

R R

8

S

S S

9 10 T T

T

U

U U

11

T T

T

12

U

U U

13

V

V

V V

W W

W W

14

V

V

V V

15

W W

W W

By inspection, we have

r4(x) = r5(x) = 1 + 2x

r7(x) = r8(x) = r11(x) = r12(x) = 1 + 3x+ x2

r14(x) = r15(x) = 1 + 4x+ 3x2.

Now consider board B3. We have divided the empty cells into two groups, marked P and Q respectively.
There is no row that contains both P and Q, and there is no column that contains both P and Q, so P and
Q are fully disjoint. Thus, Theorem 8.7 is applicable, and we get r3(x) = r4(x)r5(x). We can also factor
boards B6, B10 and B13 in a similar way. We find that

r3(x) = r4(x)r5(x) = (1 + 2x)2 = 1 + 4x+ 4x2

r6(x) = r7(x)r8(x) = (1 + 3x+ x2)2 = 1 + 6x+ 11x2 + 6x3 + x4

r10(x) = r11(x)r12(x) = (1 + 3x+ x2)2 = 1 + 6x+ 11x2 + 6x3 + x4

r13(x) = r14(x)r15(x) = (1 + 4x+ 3x2)2 = 1 + 8x+ 22x2 + 24x3 + 9x4.
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Now consider board B9, in which we have marked one square with a red dot. Blocking that square gives
B13, and stripping it gives B10. Theorem 8.1 therefore tells us that r9(x) = r13(x) + x r10(x). We can also
block and strip the marked square in B2 to get B6 and B3, or we can block and strip the marked square in
B1 to get B9 and B2. We therefore have

r9(x) = r13(x) + x r10(x) = (1 + 8x+ 22x2 + 24x3 + 9x4) + x (1 + 6x+ 11x2 + 6x3 + x4)

= 1 + 9x+ 28x2 + 35x3 + 15x4 + x5

r2(x) = r6(x) + x r3(x) = (1 + 6x+ 11x2 + 6x3 + x4) + x (1 + 4x+ 4x2)

= 1 + 7x+ 15x2 + 10x3 + x4

r1(x) = r9(x) + x r2(x) = (1 + 9x+ 28x2 + 35x3 + 15x4 + x5) + x (1 + 7x+ 15x2 + 10x3 + x4)

= 1 + 10x+ 35x2 + 50x3 + 25x4 + 11x4 + 2x5.

(If we wanted to save writing, it would not be hard to do this calculation without explicitly drawing any of
the boards to the right of the dotted line.) In particular, the number of ways of adding an admissible row
to our original table is the number of ways of placing 5 non-challenging rooks on B1, which is the coefficient
of x5 in r1(x), which is 2. In fact, the two possible rook placements are a3b5c2d1e4 and a5b1c4d2e3, so the
two possibilities for the extra row are (3, 5, 2, 1, 4) and (5, 1, 4, 2, 3).

Problem 8.10. Calculate the full rook polynomial for the board in Problem 7.14.

Solution. We use the same method as in the previous example, but written in a slightly more efficient way.

1 2 3

4

5 5

5

6

7 8 9

9

10

11 12

12 12

13

13 13

We have boards B1, . . . , B13. However, B5 and B6 have not been drawn separately, they are just marked as
subsets of B4. Similarly, B9 and B10 are just marked as subsets of B8, and B12 and B13 are subsets of B11.
By inspection, we have

r3(x) = r9(x) = 1 + 2x

r5(x) = r12(x) = r13(x) = 1 + 3x+ x2

r6(x) = r10(x) = 1 + x.
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We next want to use the factoring theorem (Theorem 8.7) to calculate r4(x), r8(x) and r11(x). For that
result to be applicable, we must check that the relevant subboards are fully disjoint. This is equivalent to
the following claim: in boards B4, B8 and B11, any two squares in the same row have the same number, and
any two squares in the same column have the same number. This is clear by inspection. We therefore have

r4(x) = r5(x)r6(x) = (1 + 3x+ x2)(1 + x) = 1 + 4x+ 4x2 + x3

r8(x) = r9(x)r10(x) = (1 + 2x)(1 + x) = 1 + 3x+ 2x2

r11(x) = r12(x)r13(x) = (1 + 3x+ x2)2 = 1 + 6x+ 11x2 + 6x3 + x4.

Next, blocking and stripping the marked square in B7 gives B11 and B8. Similarly, B2 gives B4 and B3, and
B1 gives B7 and B2. We therefore have

r7(x) = r11(x) + x r8(x) = 1 + 6x+ 11x2 + 6x3 + x4 + x (1 + 3x+ 2x2)

= 1 + 7x+ 14x2 + 8x3 + x4

r2(x) = r4(x) + x r3(x) = 1 + 4x+ 4x2 + x3 + x (1 + 2x)

= 1 + 5x+ 6x2 + x3

r1(x) = r7(x) + x r2(x) = 1 + 7x+ 14x2 + 8x3 + x4 + x (1 + 5x+ 6x2 + x3)

= 1 + 8x+ 19x2 + 14x3 + 2x4.

In particular, the number of ways of allocating the jobs in Problem 7.14 is the same as the number of ways
of placing 4 non-challenging rooks on B1, which is the coefficient of x4 in r1(x), which is 2. This is the same
answer as we found previously in Problem 7.14.
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9. Tabular methods

There is a tabular method for finding all the full matchings for a given n× n board.

Example 9.1.
Interactive demo

The picture on the left below is the board from Problem 7.16, and the table on the right finds all the 13
solutions.

A

B

C

D

E

1 2 3 4 5
A3 B3 C1 D5 ✗

C4 D1 ✗

D5 E1 ✓

C5 D1 ✗

B4 C1 D5 E3 ✓

C5 D1 E3 ✓

B5 C1 ✗

C4 D1 E3 ✓

A3 B4 C1 D2 ✗

D5 E2 ✓

C5 D1 E2 ✓

D2 E1 ✓

B5 C1 D2 ✗

C4 D1 E2 ✓

D2 E1 ✓

A4 B3 C1 D2 ✗

D5 E2 ✓

C5 D1 E2 ✓

D2 E1 ✓

B5 C1 D2 E3 ✓

We will not explain the method in detail here, as it is much easier to understand by working through the
interactive demonstration.

10. Inclusion-exclusion for matching problems

Definition 10.1. Let B be an n × n board, with each square coloured black or white as before. We then
write B for the board with the colours exchanged, so the white squares for B are the black squares for B
and vice-versa. We call B the complement of B.

Example 10.2. B and B could be as follows.
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B B

As before, we write ck(B) for the number of ways of placing k non-challenging rooks on B, or equivalently
the numbers of partial matchings of size k for the corresponding matching problem. Similarly, we write
ck(B) for the number of ways of placing k non-challenging rooks on B. We are particularly interested in
cn(B), which is the number of full matchings for B. It turns out that if we know c0(B), . . . , cn(B) then we
can work out cn(B):

Theorem 10.3. cn(B) =
∑n

k=0(−1)k(n− k)!ck(B).

We will prove this after a preliminary result. The Inclusion-Exclusion Principle (from Section 5) will play
a central rôle in the proof. We will then use this theorem to solve the snap problem (Problem 7.15) and the
ménage problem (Problem 7.16).

Remark 10.4. Theorem 10.3 covers only the case of a square board of size n × n, and gives only the
top coefficient cn(B) in the rook polynomial of the complementary board. However, the statement can be
generalised as follows: if B is part of an n×m board, and 0 ≤ p ≤ min(n,m) then

cp(B) =

p∑
k=0

(−1)k
(
n− k

p− k

)(
m− k

p− k

)
(p− k)!ck(B).

The proof is quite similar to that of Theorem 10.3, with only a few additional complications; we leave it to
the reader to work out the details.

Definition 10.5. We write S for the set of ways of placing n non-challenging rooks on the full n× n board
(so |S| = n! by Proposition 7.11). Now let x be a position on the board. We define Sx ⊆ S to be the set of
rook placements that include a rook at x. More generally, given a set X = {x1, . . . , xm} of board positions,
we put

SX =
⋂
i

Sxi = Sx1 ∩ · · · ∩ Sxm

= { non-challenging rook placements with a rook at each position xi}.

Lemma 10.6. Consider a set X = {x1, . . . , xm} as above.

(a) If there is a row containing two of the positions xi, or a column containing two of the positions xi,
then SX = ∅ and so |SX | = 0.

(b) Otherwise, we have |SX | = (n−m)!.

Proof.
Interactive demo

• Suppose that some row contains both xi and xj (with i ̸= j). Then if we place two rooks at xi and
xj , then they will challenge each other, so the placement does not count as an element of SX . This
means that it is impossible to have any elements of SX , so SX = ∅ and |SX | = 0.

• The same applies if some column contains both xi and xj with i ̸= j.
• Suppose instead that the xi are all in different rows, say r1, . . . , rm, and also in different columns,
say c1, . . . , cm. Let A be the set of rows other than r1, . . . , rm, so |A| = n−m. Let B be the set of
columns other than c1, . . . , cm, so |B| = n−m. To get a full rook placement in SX we need to place
rooks on X, then place n−m rooks on the board A×B, which is an (n−m)×(n−m) board with no
black squares. Proposition 7.11 tells us that there are (n−m)! ways to do this, so |SX | = (n−m)!.

□
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Proof of Theorem 10.3. We need to understand the set Cn(B) ⊆ S. Consider a rook placement P for the
full board, so P ∈ S. We claim that P ∈

⋃
x∈B Sx iff P ̸∈ Cn(B). Indeed, we have P ∈

⋃
x∈B Sx iff there

exists a square x ∈ B such that P ∈ Sx. However, we have P ∈ Sx iff the placement P has a rook at x.
Here x is a white square of B so it is a black square of B, so if the placement has a rook at x, then it does
not count as a placement on B, so P ̸∈ Cn(B). This argument is reversible, so P ∈

⋃
x∈B Sx iff P ̸∈ Cn(B).

By the contrapositive, we have P ∈ Cn(B) iff P ̸∈
⋃

x∈B Sx, or in other words P ∈ S \
⋃

x Sx. The negative
form of the IEP now tells us that

cn(B) = |Cn(B)| =
∑
X⊆B

(−1)|X||SX |.

If X is not a non-challenging rook placement on B, then |SX | = 0 by Lemma 10.6(a), so we can ignore
these terms. On the other hand, if X is a placement of k non-challenging rooks on B, then |SX | = (n− k)!
by Lemma 10.6(a). The number of terms of this type is ck(B), so the sum of all terms of this type is
(−1)k(n− k)!ck(B). Putting this together, we get cn(B) =

∑n
k=0(−1)k(n− k)!ck(B) as claimed. □

Remark 10.7. We can apply Theorem 10.3 to B and note that B = B; this gives

cn(B) =
n∑

k=0

(−1)k(n− k)!ck(B).

Example 10.8. As a trivial example, we have cn(Fn) =
∑n

k=0(−1)k(n− k)!ck(Fn). However, all squares in

Fn are black, so we cannot place any rooks there, so ck(Fn) = 0 for k > 0. On the other hand, we always
have c0 = 1, so our equation becomes

cn(Fn) = (−1)0n!c0(Fn) = n!,

and we knew this already from Proposition 7.10.

Example 10.9. Recall from Example 7.6 that Dn is the n×n board with only the diagonal squares coloured
white, and that ck(Dn) =

(
n
k

)
= n!/(k!(n− k)!). We thus have

cn(Dn) =

n∑
k=0

(−1)k(n− k)!ck(Dn) = n!

n−1∑
k=0

(−1)k/k!.

On the other hand, Problem 7.13 shows that Cn(Dn) is the set of derangements of {1, . . . , n}. We saw in

Proposition 5.11 that the number of derangements is n!
∑n−1

k=0(−1)k/k!, so everything is consistent.

Definition 10.10. The board Qn consists of 2n− 1 white squares in an n× n board arranged in a zigzag
pattern as illustrated on the left below. (To see that there are 2n − 1 white squares, note that there are
n rows, and each row contains two white squares, except for the first row, which contains only one white
square.) We also consider the board Q′

n, which has an extra white square at the top right, making 2n white
squares in total.

Q5 = Q′
5 =

We call a board of type Qn a staircase.

Proposition 10.11. For 0 ≤ k ≤ n we have ck(Qn) =
(
2n−k

k

)
. We also have

ck(Q
′
n) = ck(Qn) + ck−1(Qn−1) =

(
2n− k

k

)
+

(
2n− 1− k

k − 1

)
.

Proof.
Interactive demo
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By inspection, two rooks on the staircase challenge each other iff they are adjacent. Thus, the allowable
rook placements are just subsets of the staircase that have no adjacent elements; in other words, they must
be gappy, as in Definition 1.21. Thus, ck(Qn) is the number of gappy subsets of size k in the staircase.

Proposition 1.23 therefore gives ck(Qn) =
(
m−k+1

k

)
, where m is the number of cells in the staircase. This is

just m = 2n− 1, so we get ck(Qn) =
(
2n−k

k

)
.

Now consider Q′
n. Blocking the top right square gives Qn, and stripping it gives a reflected copy of

Qn−1. Thus, Theorem 8.1 gives ck(Q
′
n) = ck(Qn)+ ck−1(Qn−1), which is

(
2n−k

k

)
+
(
2n−1−k

k−1

)
by the previous

paragraph. □

We can now complete our analysis of the ménage problem.

Example 10.12. Using Proposition 10.11, we see that the rook polynomial coefficients of Q′
5 are as follows:

c0(Q
′
5) = 1

c1(Q
′
5) =

(
9

1

)
+

(
8

0

)
= 10

c2(Q
′
5) =

(
8

2

)
+

(
7

1

)
= 35

c3(Q
′
5) =

(
7

3

)
+

(
6

2

)
= 50

c4(Q
′
5) =

(
6

4

)
+

(
5

3

)
= 25

c5(Q
′
5) =

(
5

5

)
+

(
4

4

)
= 2.

Now note that the board B considered in Problem 7.16 is just the complement of Q′
5. It follows that

c5(B) = 5!c0(Q
′
5)− 4!c1(Q

′
5) + 3!c2(Q

′
5)− 2!c3(Q

′
5) + 1!c4(Q

′
5)− 0!c5(Q

′
5)

= 120× 1− 24× 10 + 6× 35− 2× 50 + 1× 25− 1× 0

= 13.

Thus, there are precisely 13 full matchings for B. As explained in Problem 7.16, it follows that there are
2× 120× 13 = 3120 ways to solve the seating problem described there.

We can also now complete our analysis of the snap problem.

Example 10.13. Let B denote the board shown in Problem 7.15, which is a 16 × 16 board with four
black blocks of size 4 × 4 on the diagonal. This means that B consists of four fully disjoint copies of F4.
Proposition 7.11) tells us that

rF4
(x) =

4∑
k=0

(
4

k

)2

k!xk = 1 + 16x+ 72x2 + 96x3 + 24x4.

Moreover, we can use Theorem 8.7 to show that

rB(x) = rF4
(x)4.

It would be a lot of work to expand this by hand, but it can easily be done with a computer. If rF4(x)
4 =∑16

i=0 aix
i, we then find that c16(B) =

∑
i(−1)i(16− i)!ai. Using a computer again, we find that c16(B) ≃

2.483 × 1011. This is the number of possible games with no snap. On the other hand, the total number of
possible games is 16! ≃ 2.092× 1013. Thus, the probability of not getting a snap is

c16(B)/52! ≃ 2.483× 1011

2.092× 1013
≃ 0.012.

In other words, only about one in a hundred games will end without a snap. This was all for the restricted
game where we only use aces, kings, queens and jacks. If we want to use the full pack, we need to expand
rF4

(x)13 as
∑52

i=0 bix
i, and then calculate c52(B) =

∑
i(−1)i(52− i)!bi, which works out to 1.309× 1066. We

then divide by 52! ≃ 8.066× 1067 to give a probability of approximately 0.016.
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11. Hall’s marriage theorem

Video (Up to Lemma 11.5)

Consider a matching problem, with a set A of people, a set B of jobs, and a set E ⊆ A×B consisting of
pairs (a, b) where person a is qualified for job b.

Definition 11.1. We say that the matching problem is solvable if there exists a full matching. This means
that it is possible to allocate every job to a qualified person, in such a way that no one has more than one
job.

Suppose we want to decide whether a given matching problem is solvable. One approach would be to use
the methods that we have already seen to count or tabulate the full matchings; that will in particular tell
us whether there are any full matchings. However, if we are only interested in the existence question, then
some different methods become available, as we will describe in this section.

Definition 11.2.
Interactive demo

Recall that in Remark 6.5, we defined

Cb = {a ∈ A | (a, b) ∈ E} = { people who are qualified to do job b}.
We will refer to this as the candidate set for b. More generally, if U ⊆ B is some subset of the jobs, we put

CU =
⋃
b∈U

Cb = {a ∈ A | (a, b) ∈ E for some b ∈ U}

= { people who are qualified for at least one of the jobs in U}.
We again call this the candidate set for U . We say that

(a) U is implausible if |CU | < |U |.
(b) U is barely plausible if |CU | = |U |.
(c) U is very plausible if |CU | > |U |.
(d) U is plausible if |CU | ≥ |U | (so U is either barely plausible or very plausible).

We also say that the whole matching problem is plausible if every subset U ⊆ B is plausible.

Remark 11.3. We always have C∅ = ∅ so |C∅| = 0 = |∅| so ∅ is barely plausible.

Example 11.4. Suppose we have a set A = {Paula,Quentin,Ruth,Steve,Tessa} of people, and a set
B = {Artist,Baker,Courier,Dentist,Electrician} of jobs, with qualifications as follows:

P

Q

R

S

T

A B C D E

We then have

C{B,D} = { people qualified to be a baker or a dentist } = CB ∪ CD

= {P,Q,R, T} ∪ {S} = {P,Q,R, S, T}.
Proceeding in the same way, we see that

• C{E} = {Q,S}, so |C{E}| = 2 > 1 = |{E}|, so {E} is very plausible.
• C{A,B} = {P,Q,R, S, T}, so |C{A,B}| = 5 > 2 = |{A,B}|, so {A,B} is very plausible.
• C{C,D} = {Q,S}, so |C{C,D}| = 2 = |{C,D}|, so {C,D} is barely plausible.
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• C{C,D,E} = {Q,S}, so |C{C,D,E}| = 2 < 3 = |{C,D,E}|, so {C,D,E} is implausible.

This last example is a problem. We need to assign jobs C, D and E, and we can ignore people P , R and T ,
because none of them can do any of these jobs. This just leaves two people Q and S who need to cover three
jobs, which is not possible. Thus, our allocation problem is not solvable. The next lemma will generalise
this line of argument.

Lemma 11.5. If the problem is solvable, then it is plausible. Thus, by the contrapositive, if the problem is
not plausible then it has no solution.

Proof. If the problem is solvable, then we can choose a full matchingM . Consider a subset U = {b1, . . . , bm} ⊆
B. Then M must allocate each job bi ∈ U to some person ai ∈ A. As M is a matching, we know that the
people a1, . . . , am are all different, and that ai is qualified for job bi, so ai ∈ CU . We thus have distinct
elements a1, . . . , am ∈ CU , so |CU | ≥ m = |U |, so the set U is plausible. This holds for all U , so the whole
matching problem is plausible. □

The main result of this section is the converse to the above lemma.

Theorem 11.6 (Hall’s Marriage Theorem). If a matching problem is plausible, then it is solvable.

Remark 11.7. Hall first formulated this result in the context of assigning romantic partners rather than
jobs, hence the name.

We will give two different proofs of Hall’s theorem. The first proof will rely on the following construction.

Construction 11.8.
Video

Suppose we have a matching problem as above, and a partial matching M ′ that assigns some subset
B′ ⊆ B of the jobs to some subset A′ ⊆ A of the people. (Note that M ′ gives a bijection from B′ to A′, so
we automatically have |A′| = |B′|.) There is then an obvious way to set up a new matching problem for the
assignment of the remaining jobs. In more detail, we take A′′ = A\A′ (the set of people who have not already
been given a job), and B′′ = B \B′ (the set of jobs that still need to be assigned) and E′′ = E ∩ (A′ ×B′).
This gives a new matching problem, with candidate sets C ′′

U = CU ∩ A′′ = CU \ A′ for all U ⊆ B′′. We call
this the completion problem for M ′. If we can find a solution M ′′ for the completion problem, then we can
combine it with M ′ to get a solution for the original problem.

First proof of Theorem 11.6.
Video

If there are no jobs, then there is nothing to do, and the problem is vacuously solved.
Suppose instead that there is only one job, say B = {b}. By hypothesis, the set {b} is plausible, which

means that |Cb| ≥ 1, so Cb ̸= ∅, so we can choose a ∈ Cb. This means that person a is qualified to do job b,
so we can just allocate b to a, and there is nothing more to do.

Now suppose that |B| = n > 1. We can assume by induction that any plausible problem with at most
n− 1 jobs can be solved. By an intermediate set we mean a set U ⊆ B with U ̸= ∅ and U ̸= B. Note that
one of the following two cases must hold:

(easy) Every intermediate set is very plausible.
(hard) There is an intermediate set B′ ⊆ B such that B′ is barely plausible.

First consider the easy case. Choose any job b0 ∈ B, and put B′ = {b0} and B′′ = B \ B′. As {b0} is
plausible, we have |Cb0 | ≥ 1, so we can choose a0 ∈ Cb0 and put A′ = {a0} and A′′ = A \A′. Let M ′ be the
partial matching that assigns b0 to a0. We claim that the corresponding completion problem is plausible. In
other words, for all U ⊆ B′′, we claim that |C ′′

U | ≥ |U |. If U is empty, this holds by Remark 11.3. Suppose
instead that U ̸= ∅. As U ⊆ B′′, we also have U ̸= B. As we are in the easy case, it follows that U is very
plausible, so |CU | > |U |, or equivalently |CU | − 1 ≥ |U |. We also have C ′′

U = CU \ {a0}, so |C ′′
U | is either

|CU | − 1 (if a0 ∈ CU ) or |CU | (if a0 ̸∈ CU ). Either way, we have |C ′′
U | ≥ |CU | − 1 ≥ |U |, as required. As C ′′

is a plausible problem with n− 1 jobs, our induction hypothesis guarantees that it has a solution, say M ′′.
We can combine this with M ′ to get a solution for the original problem.
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Now suppose instead that we are in the hard case. We can therefore choose an intermediate set B′ (so
B′ ⊂ B with ∅ ̸= B′ ̸= B) such that B′ is barely plausible. Put B′′ = B \ B′. Note that |B′| < n and
|B′′| < n, so our induction hypothesis guarantees that any plausible allocation problem for B′ or for B′′ is
solvable. In particular, we can restrict our original allocation problem to B′, and there must exist a solution
for this, say M ′. This assigns the jobs in B′ to some set of people A′ ⊆ A, which must have |A′| = |B′|. We
again claim that the completion problem for M ′ is plausible. However, the proof is a little more complicated
than in the easy case. The first point to note is that A′ = CB′ . To see this, note that each person in A′

has been assigned a job in B′, and M ′ is assumed to be a valid partial matching so they must be qualified
for the job that they have been assigned, so A′ ⊆ CB′ . On the other hand, we have already remarked that
|A′| = |B′|, and |B′| = |CB′ | because B′ is assumed to be barely plausible, so |A′| = |CB′ |. As A′ ⊆ CB′ with
|A′| = |CB′ |, we see that A′ = CB′ as claimed. Now consider a subset U ⊆ B′′. Recall that C ′′

U = CU \ A′,
essentially by definition. As A′ = CB′ , this can be rewritten as C ′′

U = CU \ CB′ . It is also easy to see that
CB′∪U = CB′ ∪ CU and so

CB′∪U \ CB′ = (CB′ ∪ CU ) \ CB′ = CU \ CB′ = C ′′
U .

This gives

|C ′′
U | = |CB′∪U \ CB′ | = |CB′∪U | − |CB′ | = |CB′∪U | − |A′|.

As the original problem is assumed to be plausible, we have |CB′∪U | ≥ |B′ ∪U |. Here U ⊆ B′′, so B′ and U
are disjoint, so |B′ ∪ U | = |B′|+ |U | = |A′|+ |U |. Putting this together, we get

|C ′′
U | ≥ (|A′|+ |U |)− |A′| = |U |.

This shows that the completion problem C ′′ is plausible, as claimed. We also know that |B′′| < n, so we
can use our induction hypothesis to show that the completion problem has a solution. Just as in the easy
case, we can choose a solution to the completion problem and combine it with M ′ to get a solution for the
original problem, as required. □

The above proof is theoretically satisfying, but does not really provide much guidance about how to find a
solution. We will therefore give a second proof which is a bit more complicated, but also more constructive.
In this second proof, we try to allocate the jobs one by one. Suppose we have already allocated a subset
B′ ⊆ B of the jobs, and we are trying to allocate one more job, say b0. It might happen that we get stuck:
all the people who are qualified to do b0 have already been given one of the jobs in B′. To fix this, we need
to change the allocation of the jobs in B′ in order to free up someone who is qualified to do b0, and the main
problem is to analyse the possibilities for making this kind of adjustment.

Video (Definition 11.9 to the end of Section 11)

Definition 11.9. Suppose we have a matching problem as before, and a partial matching M ′, which assigns
some subset B′ ⊆ B of the jobs. Let b0 be an element of B \ B′, so job b0 is not assigned by M ′. By an
open zigzag for (M ′, b0), we mean a pattern like this:

a0

a1

a2

a3

b0

b1

b2

b3

M ′

In more detail, an open zigzag is a sequence (a0, . . . , ar; b0, . . . , br) with properties as follows (the picture
above shows r = 3).

• The people a0, . . . , ar are all different, and the jobs b0, . . . , br are all different.
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• For i = 1, . . . , r, job bi is assigned by M ′ to person ai−1 (so bi ∈ B′, and ai−1 is qualified for bi).
This is indicated by the solid arrows in the picture.

• For i = 0, . . . , r, person ai is qualified for job bi. This is indicated by the dotted arrows in the
picture.

• Person ar is not assigned a job by M ′.

Given such an open zigzag, we define a new matching M∗ for the jobs in B′ ∪ {b0} as follows:

• M∗ assigns bi to ai for i = 0, . . . , r
• For b ∈ B′ \ {b1, . . . , br}, the matching M∗ assigns b in the same way that M ′ does.

This can be illustrated as follows:

a0

a1

a2

a3

b0

b1

b2

b3

M∗

The process that constructs M∗ from M ′ is called flipping.

Remark 11.10. The easiest case is the case r = 0, where a0 is qualified for b0 and has not already been
assigned a job by M ′, so M∗ does not change any of the assignments made by M ′ but simply adds an
assignment of b0 to a0.

Suppose we can prove that for every M ′ and b0 as above, there always exists an open zigzag. We can
then flip the zigzag to get a new matching that includes b0. After doing this repeatedly, we will eventually
get a full matching. Thus, the key problem is to prove the existence of open zigzags.

Example 11.11. Consider an allocation problem with people A = {p, q, r, s} and jobs B = {i, j, k, l} and
qualifications as follows:

p

q

r

s

i j k l

We have a partial matching M ′ assigning the first three jobs to the first three people in the obvious way:
i 7→ p and j 7→ q and k 7→ r. Now we seem to be stuck: the only person who can do l is p, but p is already
doing i. We therefore remove p from i and give them l instead, leaving i unfilled. This creates another
problem: the only remaining person qualified for i is q, but q is already doing j. We therefore remove q
from j and give them i instead, leaving j unfilled. This creates another problem: the only remaining person
qualified for j is r, but r is already doing k. We therefore remove r from k and give them j instead, leaving
k unfilled. Now we are OK because person s is free and is qualified for k, so we can assign k to s and we
have filled all jobs. What we have effectively done is to flip the following zigzag:
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p

q

r

s

l

i

j

k

M ′

p

q

r

s

l

i

j

k

M∗

We could also illustrate M ′ and M∗ using rook placements, as follows:

p

q

r

s

i j k l

M ′

p

q

r

s

i j k l

M∗

Definition 11.12. By an closed zigzag for (M ′, b0), we mean a sequence x = (a0, . . . , ar−1; b0, . . . , br) such
that

• The people a0, . . . , ar−1 are all different, and the jobs b0, . . . , br are all different.
• For i = 1, . . . , r, job bi is assigned by M ′ to person ai−1 (so bi ∈ B′, and ai−1 is qualified for bi).
• For i = 0, . . . , r − 1, person ai is qualified for job bi.

In other words, a closed zigzag is like an open zigzag, except that the person ar is not provided. We say
that x is openable if there exists another person ar who is qualified for br and is not assigned any job by
M ′, so that the sequence (a0, . . . , ar; b0, . . . , br) is an open zigzag. We say that x is extendable if there exists
another person ar and another job br+1 such that M ′ assigns br+1 to ar, but ar is also qualified for br, so
that the sequence (a0, . . . , ar; b0, . . . , br+1) is a closed zigzag.

Definition 11.13. We define U to be the set of jobs that occur in some closed zigzag.

Remark 11.14. If a job b occurs in some closed zigzag, then we can discard everything after b, and that
gives a closed zigzag that ends with b. Thus, we can also say that U is the set of jobs that appear at the
end of some closed zigzag.

Remark 11.15. Suppose that b ∈ U , so there exists a closed zigzag x = (a0, . . . , ar−1; b0, . . . , br) with
br = b. This usually means that M ′ assigns b to person ar−1, so in particular b ∈ B′. The only exception is
the case where r = 0. The sequence (∅; b0) counts as a closed zigzag, showing that b0 ∈ U , but b0 ̸∈ B′. We
thus have U = {b0} ∪ U ′, where U ′ ⊆ B′.

Second proof of Theorem 11.6. As before, we argue by induction on |B|. We choose any job b0 ∈ B and put
B′ = B \ {b0}. The matching problem is still plausible when restricted to B′, so the induction hypothesis
gives us a partial matching M ′ that assigns all the jobs in B′. We just need to assign b0 as well, which
may involve changing some of the assignments for B′. We then define U and U ′ as in Definition 11.13 and
Remark 11.15. Put m = |U ′| and note that |U | = m+1. Recall that U ′ ⊆ B′, so M ′ assigns all the jobs in U ′

to a set of people V ′ ⊆ A′. Because M ′ is a legitimate matching, it assigns different jobs to different people,
so |V ′| = m. Moreover, the people in V ′ are qualified for the jobs that they have been assigned, so V ′ ⊆ CU .
However, our matching problem is plausible by assumption, so |CU | ≥ |U | = m+ 1. As |CU | > |V ′|, we can
choose a∗ ∈ CU such that a∗ ̸∈ V ′. Because a∗ ∈ CU , we can choose a job b∗ ∈ U such that a∗ is qualified
for b∗. Because b∗ ∈ U , we can choose a closed zigzag x = (a0, . . . , ar−1; b0, . . . , br) such that br = b∗. Note
that bi+1 ∈ U ′ for i = 0, . . . , r − 1, and M ′ assigns bi+1 to ai, so ai ∈ V ′. As a∗ ̸∈ V ′, we see that a∗ is
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different from a0, . . . , ar−1. Now suppose for a contradiction that M ′ assigns some job b′ to a∗. Note that
M ′ does not assign b0, and assigns bi+1 to ai, which is different from a∗; so b′ must be different from all of
b0, . . . , br. It now follows that the sequence

x′ = (a0, . . . , ar−1, a
∗; b0, . . . , br, b

′)

is again a closed zigzag. As b′ ̸= b0 and b′ appears in a closed zigzag, we have b′ ∈ U ′. As M ′ assigns b′ ∈ U ′

to a∗, it follows that a∗ ∈ V ′, which contradicts our initial assumption about a∗. It follows that M ′ does
not in fact assign any job to a∗, so that the sequence

x∗ = (a0, . . . , ar−1, a
∗; b0, . . . , br)

is an open zigzag. We can thus flip this zigzag to obtain a new matching M∗ that assigns b0 as well as all
of B′. In other words, M∗ assigns all the jobs. □

12. Extensions and applications

Suppose we have a job allocation problem as before, but the number of jobs is smaller than the number
of people, so that not everyone will get a job. Suppose that there are some enthusiastic people who really
want a job, and some other people who do not care so much. Can we arrange a job allocation in which every
enthusiastic person gets a job? Obviously this will be easier if every job has many enthusiastic candidates.
We can give a precise result as follows.

Theorem 12.1.
Video

Consider a job allocation problem with a set A of people and a set B of jobs such that |A| ≥ |B|. Suppose
we are also given a subset E ⊆ A of enthusiastic people. Suppose that for each subset V ⊆ B we have

(a) |CV | ≥ |V | (so V is plausible, as in Definition 11.2)
(b) |E ∩ CV | ≥ |V |+ |E| − |B|.

Then there is a matching M which allocates all the jobs, in such a way that all the enthusiastic people get a
job.

Proof of Theorem 12.1. Imagine a set B′ of additional fake jobs that can only be done by unenthusiastic
people (watching TV, lying on the beach and so on). The number of additional jobs should be |B′| = |A|−|B|,
so that the set B∗ = B ∪ B′ has |B∗| = |A|. We declare that all the unenthusiastic people are qualified for
all of the jobs in B′, and that none of the enthusiastic people are qualified. This gives a new job allocation
problem, with candidate sets C∗

U ⊆ A for U ⊆ B∗ say. We claim that this extended problem is still plausible,
or in other words that |C∗

U | ≥ |U | for all U ⊆ B∗. Indeed, we can write U as V ∪ V ′, where V ⊆ B is a
set of real jobs and V ′ ⊆ B′ is a set of fake jobs. If V ′ is empty then U = V and the candidate set is the
same as before, i.e. C∗

U = CU = CV , so |C∗
U | = |CU | ≥ |U | by condition (a) in the statement of the theorem.

Suppose instead that V ′ ̸= ∅, so U contains at least one fake job, so all unenthusiastic people are candidates
for U , as well as the real candidates for all the real jobs in U . In symbols, we have C∗

U = CV ∪ (A \E). We
claim that |C∗

U | = |A| − |E|+ |E ∩ CV |. To see this, consider the following Venn diagram:
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CV E

A

E ∩ CV

n0

n1 n2

n3

The shaded region is C∗
U = CV ∪(A\E) We have |A| = n0+n1+n2+n3 and |E| = n2+n3 and |E∩CV | = n3

and |C∗
U | = n0+n1+n3; the claim is clear from this. We also have |E∩CV | ≥ |V |+ |E|− |B| by our original

assumptions, so

|C∗
U | ≥ |V |+ |E| − |B|+ |A| − |E| = |V |+ |A| − |B|.

On the other hand, we have U = V ∪ V ′ with V ′ ⊆ B′ and |B′| = |A| − |B| so |V ′| ≤ |A| − |B| so
|U | = |V | + |V ′| ≤ |V | + |A| − |B|. Putting this together, we get |C∗

U | ≥ |U | as required. This proves that
our new allocation problem is plausible, so Hall’s Theorem tells us that there is a solution, say M∗. This
allocates all the real jobs and all the fake jobs. As |B∗| = |A|, we see that everyone gets a job (either real or
fake) for which they are qualified. The enthusiastic people are not qualified for the fake jobs, so they must
all be allocated a real job. Thus, if we just ignore the fake jobs, we have a solution to the original problem
in which every enthusiastic person is employed. □

For later use, it will be convenient to reformulate condition (b) of the theorem slightly.

Lemma 12.2. In the context of Theorem 12.1, the condition |E ∩ CU | ≥ |U | + |E| − |B| is equivalent to
|E \ CU | ≤ |B \ U |.

Proof. E is the disjoint union of the sets E ∩CU and E \CU , so |E \CU | = |E| − |E ∩CU |. Also, it is clear
that |B \U | = |B| − |U |. Thus, the condition |E \CU | ≤ |B \U | is equivalent to |E| − |E ∩CU | ≤ |B| − |U |,
and this can be rearranged as |E ∩ CU | ≥ |U |+ |E| − |B|. □

Remark 12.3. After this reformulation, it becomes clear that condition (b) is necessary as well as sufficient.
Indeed, the people in E \CU need to be given jobs (because they are enthusiasts) but they cannot be given
jobs from U (because they are unqualified) so they need to be given jobs from B \U . This will be impossible
unless |E \ CU | ≤ |B \ U |.

In the above results, we have repeatedly used the column/candidate sets:

Cb = { people who are qualified for job b}.

Recall that we also defined the row sets:

Ra = { jobs that person a can do }.

Video (Proposition 12.4 and Corollary 12.5)

Proposition 12.4. Suppose that there is a constant d > 0 such that

(a) For every job b we have |Cb| ≥ d, so every job has at least d candidates.
(b) For every person a we have |Ra| ≤ d, so no person is qualified for more than d jobs.

Then the matching problem is plausible, and so has a solution by Hall’s Theorem.
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Proof. Consider a subset U ⊆ B; we must show that |CU | ≥ |U |. We will consider a set X, which we can
describe in three different ways:

X = {(a, b) ∈ A× U | a is qualified for b}
= {(a, b) | a ∈ A and b ∈ Ra ∩ U}
= {(a, b) | b ∈ U and a ∈ Cb}.

A moment’s thought should convince you that these are three ways of saying the same thing. From the third
description of X, we get

|X| =
∑
b∈U

|Cb| ≥
∑
b∈U

d = d|U |.

On the other hand, the second description gives

|X| =
∑
a∈A

|Ra ∩ U |.

If a ̸∈ CU then a is not qualified for any of the jobs in U so Ra ∩ U = ∅, so the corresponding term is zero.
On the other hand, if a ∈ CU then we have |Ra ∩ U | ≤ |Ra| ≤ d. We therefore have

|X| =
∑
a∈CU

|Ra ∩ U | ≤
∑
a∈CU

d = d|CU |.

By putting these inequalities together, we get d|CU | ≥ d|U |. As d > 0, we can divide by d to get |CU | ≥ |U |,
as required. □

Corollary 12.5. Suppose that there is a constant d > 0 such that

(a) For every job b we have |Cb| = d, so every job has precisely d candidates.
(b) For every person a we have |Ra| ≤ d, so no person is qualified for more than d jobs.

We will say that a person a is talented if |Ra| = d. Then there is a job allocation in which every talented
person has a job.

Proof. Let T ⊆ A be the set of talented people. Proposition 12.4 is still applicable, so we know that every
subset U ⊆ B is plausible, i.e. |CU | ≥ |U |. By Hall’s Theorem, this implies that the job allocation problem
is solvable. However, it does not guarantee that the allocation can be arranged so that everyone in T gets a
job. For that, we need to check the additional criterion in Theorem 12.1, which is |T ∩CU | ≥ |U |+ |T |− |B|.
Now |T ∩ CU | = |T | − |T \ CU |, so the required inequality is equivalent to |T | − |T \ CU | ≥ |U | + |T | − |B|
or |T \ CU | ≤ |B| − |U | = |B \ U |. For this, we let Y be the set of pairs (a, b) such that a is talented and
qualified for b, but a is not qualified for any job in U . This ensures that b cannot be in U , so b ∈ B \ U .
Once we have chosen b, we can try to choose a; this must in particular be an element of Cb, and |Cb| ≤ d, so
there are at most d choices for a. This analysis gives |Y | ≤ d|B \U |. Alternatively, we can start by choosing
a. This can be any element of T \ CU , and then b can be any of the jobs for which a is qualified. As a is
talented, there are precisely d choices for b. This analysis gives |Y | = d |T \CU |. Putting these together, we
get d |T \ CU | ≤ d |B \ U |. As d > 0 this gives |T \ CU | ≤ |B \ U | as required. □

We now give another theorem that is mathematically equivalent to Hall’s Theorem, but thinly disguised.

Definition 12.6. Suppose we have a list of finite sets A1, . . . , Ar. A transversal is a list of elements a1, . . . , ar
such that ai ∈ Ai for all i, and the elements ai are all different. The list is plausible if for every sequence of
indices i1 < i2 < · · · < ik ≤ r, we have

|Ai1 ∪Ai2 ∪ · · · ∪Aik | ≥ k.

The phrase distinct set of representatives means the same as transversal.

Example 12.7. Consider the following list:

A1 = {1, 3} A2 = {2, 3} A3 = {1, 3, 4, 5} A4 = {2, 4, 6} A5 = {1, 5} A6 = {1, 2}.
The following choices give a transversal:

a1 = 1 a2 = 3 a3 = 4 a4 = 6 a5 = 5 a6 = 2.
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Proposition 12.8. There exists a transversal iff the list is plausible.

Proof. Put A = A1 ∪ · · · ∪Ar and B = {1, . . . , r}. Define

E = {(a, i) ∈ A×B | a ∈ Ai} ⊆ A×B;

this gives a matching problem with candidate sets Ci = Ai. Thus, if U = {i1, . . . , ik} with i1 < · · · < ik,
we have CU = Ai1 ∪ · · · ∪ Aik . This makes it clear that the list A1, . . . , Ar is plausible (according to
Definition 12.6) iff the matching problem E is plausible (according to Definition 11.2). Also, Hall’s Theorem
(together with Lemma 11.5) tells us that the matching problem is plausible iff there exists a full matching.
If M is a full matching, then it assigns each i ∈ B to some element ai ∈ Ai, in such a way that a1, . . . , ar
are all different, so we have a transversal. This construction gives a bijection between full matchings and
transversals, so in particular, a transversal exists iff a full matching exists. Putting all this together, we see
that a transversal exists iff the list of sets is plausible. □

Example 12.9. Consider the following list:

A1 = {1, 2, 3} A2 = {2, 3} A3 = {3, 5, 7} A4 = {1, 2} A5 = {1, 2, 3} A6 = {4, 5, 6}.

We note that

|A1 ∪A2 ∪A4 ∪A5| = |{1, 2, 3}| = 3.

Here we have taken 4 of the sets, and their union only has size 3, which violates the plausibility condition.
Thus, there is no transversal.

We now consider a version of the job allocation problem in which jobs can require a team of several
workers.

Video (Definition 12.10 to Proposition 12.13)

Definition 12.10. A team allocation problem consists of a set A of people, a set B of jobs, a set E ⊆ A×B
of pairs (a, b) where person a is qualified for job b, and numbers mb ≥ 0 for each b ∈ B. The problem is to
choose a team Tb ⊆ A for each job b, with |Tb| = mb, such that each person in Tb is qualified to do job b,
and the sets Tb are disjoint (so that no one has to do more than one job).

Definition 12.11. For any subset U ⊆ B, we define mU =
∑

b∈U mb (so mU is the total number of people
required for all the jobs in U). We say that U is plausible if |CU | ≥ mU . We say that the whole team
allocation problem is plausible if every subset U ⊆ B is plausible.

Remark 12.12. Suppose we have solved the team allocation problem, by choosing a team Tb for each job b.
Then CU contains

⋃
b∈U Tb, and the sets Tb are disjoint and have size mb, so |

⋃
b∈U Tb| =

∑
b∈U mb = mU ,

so |CU | ≥ mU . Thus, if the team allocation is solvable, then it is plausible. By the contrapositive, if the
problem is not plausible, then there is no solution.

It is not hard to analyse the team allocation problem by converting it into an ordinary allocation problem
of the type that we have considered already. We just imagine making a set of badges, labelled by elements
of the set

B∗ = {(b, i) | b ∈ B, 1 ≤ i ≤ mb}.
For example, if we need 5 bakers, we make badges marked Baker 1 up to Baker 5. We then put

E∗ = {(a, (b, i)) ∈ A×B∗ | (a, b) ∈ E},

corresponding to the idea that a is qualified to wear badge (b, i) iff a is qualified to do job b. Now the problem
of choosing teams is equivalent to the problem of assigning badges. Using this, we can prove the following
result.

Proposition 12.13. If a team allocation problem is plausible, then it is solvable.

Proof. Consider a plausible team allocation problem (A,B,E,m) as before, and the corresponding badge
allocation problem (A,B∗, E∗). As we have explained, it will be enough to prove that the badge allocation
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problem is solvable. By Hall’s theorem, it will be enough to show that the badge allocation problem is
plausible. Consider a subset U ⊆ B∗; we must show that |C∗

U | ≥ |U |. Put

V = {b | (b, i) ∈ U for some i}.

In other words, U is a set of badges, and V is the set of job titles that appear on at least one of those badges.
Now put

V ∗ = {(b, j) | b ∈ V, 1 ≤ j ≤ mb}.

In other words, V ∗ is the set of badges that share a job title with one of the badges in U , so U ⊆ V ∗, so
|U | ≤ |V ∗|. It is clear that |V ∗| =

∑
b∈V mb = mV , so the relation |U | ≤ |V ∗| becomes |U | ≤ mV . The team

allocation problem is assumed to be plausible, which implies that mV ≤ |CV |. On the other hand, a person
is qualified for one of the badges in U iff they are qualified for one of the jobs in V , so CV = C∗

U . Putting
this together, we get |U | ≤ |C∗

U | as required. □

13. Tournaments

Definition 13.1. Consider a finite set P . A tournament on P is a subset T ⊆ P × P such that

(a) No pair of the form (a, a) lies in T .
(b) For any two players a ̸= b, either (a, b) ∈ T or (b, a) ∈ T but not both.

Remark 13.2. We interpret this as follows. The set P could be a set of players, who play some game
against each other in pairs, with each pair playing precisely once. Then T is the set of pairs (a, b) such that
a beats b.

Example 13.3.
Interactive demo

Here are three different ways to represent the result of a tournament with players A, . . . , E:

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

LW

LA

B

C

D

E

A B C D E

AB AC AD

AE BC BD

BE CD CE

DE

A

B

CD

E

The left hand table shows who wins each game. For example, in the (A,D) position (i.e. the row marked
A and the column marked D) we see a W , indicating that A wins against D. Correspondingly, we have
an L in the (D,A) position, indicating that D loses against A. In the middle, we list all ten possible pairs
of players, with the winner marked bold and in red. On the right, we have an arrow between each pair of
players, pointing from the winner to the loser.

Remark 13.4.
Interactive demo

Here is yet another way of representing the same information. We imagine making a medal for each pair
of players, and giving it to the winner of the corresponding match. If we know each player’s collection of
medals, then we know all the results of the tournament. The tournament in Example 13.3 gives the following
medal collections.
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A v B

A v D

B v D

B v E

A v C

B v C

C v E

C v D

D v E

A v E

A B C D E

Example 13.5. We say that a tournament T is consistent if the players can be listed as a1, . . . , an in such a
way that ai beats aj whenever i < j. (In particular, a1 beats everyone else and so is the “number one player”
in the usual sense. Similarly, a2 is the “number two player” and so on.) This is the kind of tournament that
we expect when the players have consistently different levels of skill, and the better player always wins, with
no effect of randomness or anything else. In a realistic tournament, things will usually be more complicated
than this.

Interactive demo

Definition 13.6. A winning line for a tournament T ⊆ A × A is a list a1, . . . , an containing each player
exactly once, such that ai beats ai+1 for i = 1, . . . , n− 1.

Remark 13.7. Although a1 beats a2 and a2 beats a3, we are not assuming here that a1 beats a3. Thus,
having a winning line is much weaker than having a consistent ranking as in Example 13.5.

Example 13.8. In Example 13.3, the sequence C,B,D,E,A is a winning line. This is most easily seen
using the arrow graph:

A

B

CD

E

Note that the effect mentioned in Remark 13.7 appears here: C beats B and B beats D, but C does not
beat D.

Proposition 13.9. Every tournament has a winning line.

Proof. This is clear if there are 0, 1 or 2 players. Suppose instead that the set of players is P , with
|P | = n > 2, and argue by induction on n. Choose a player a∗, and put P ′ = P \ {a∗}. We can apply the
induction hypothesis to P ′, and thus list the elements of P ′ as a1, . . . , an−1, in such a way that ai beats ai+1

for i = 1, . . . , n − 2. If a∗ does not beat any of these players, then a1, . . . , an−1, a
∗ is a winning line for T .

Suppose instead that a∗ does beat some of the players ai. Let ak be the first one that a∗ beats. If k = 1, then
a∗, a1, . . . , an−1 is a winning line for T . Suppose instead that k > 1 (so ak−1 is meaningful). As ak is the first
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player that a∗ beats, we see that ak−1 must beat a∗. It follows that the sequence a1, . . . , ak−1, a
∗, ak, . . . , an−1

is a winning line. □

Definition 13.10. The score of a player in a tournament is the number of games that they win. (More
formally, the score of a ∈ A with respect to a tournament T ⊆ A × A is |{b ∈ A | (a, b) ∈ T}|.) The score
sequence of T is the list of scores of all players, written in decreasing order. We write scores(T ) for the score
sequence of T .

Example 13.11. In Example 13.11, the scores of A, B, C, D and E are 2, 2, 3, 2 and 1. The score sequence
is therefore 3, 2, 2, 2, 1. Consider instead a consistent tournament (as in Example 13.5) with n players. Then
player 1 beats players 2, . . . , n and so scores n − 1, and player 2 beats players 3, . . . , n and so scores n − 2,
and so on. The last player (number n) beats no one and so scores zero. The score sequence is therefore
n− 1, n− 2, . . . , 1, 0.

Example 13.12.
Interactive demo

Given m > 1, we can construct a tournament with 2m + 1 players as follows. The set of players is
Z/(2m + 1), so all expressions with player numbers must be interpreted modulo 2m + 1. For each i ∈
Z/(2m+1), player i beats players i+1, . . . , i+m, and is beaten by players i− 1, . . . , i−m. We call this the
odd modular tournament of size 2m + 1. For example, when m = 2 (so 2m + 1 = 5) we have the following
pattern:

0

1

23

4

Note that in this kind of tournament, each player has a score of m. This is in some sense opposite to the
case of a consistent tournament: the scores give no reason to think that any player is better than any other
player.

Interactive demo

We next want to investigate some properties of score sequences.

Definition 13.13. Consider a sequence s = (s1, . . . , sn) of nonnegative integers with s1 ≥ · · · ≥ sn. We
define

length(s) = n

firstk(s) = s1 + s2 + · · ·+ sk =
∑

1≤i≤k

si

lastk(s) = sn−k+1 + sn−k+2 + · · ·+ sn =
∑

n−k<i≤n

si

total(s) = firstn(s) = lastn(s) =
∑

1≤i≤n

si.

More generally, given any subset U ⊆ {1, . . . , n}, we put sU =
∑

i∈U si.

Definition 13.14. We say that a sequence s is realisable if there is a tournament T with scores(T ) = s.
Any such tournament is a realisation of s.
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Our main aim in this section is to prove a theorem of Landau, which will tell us exactly which sequences
are realisable. The following simple example illustrates the key ingredients:

Interactive demo

The most basic property is as follows:

Lemma 13.15. If s is a realisable sequence of length n, then total(s) =
(
n
2

)
.

Proof. As s is realisable, we can find a tournament with score sequence s. Put m =
∑

i si. This is the sum
of the scores of all players. Each game contributes a score of one to one or the other player, so the sum of all
scores is just equal to the number of games. We have one game between each pair of players, so the number
of games is the number of pairs, which is

(
n
2

)
. □

Another basic observation is as follows:

Lemma 13.16. If a sequence is realisable, then it cannot contain two zeros.

Proof. Suppose we have a tournament T , and two distinct players a and b. Then a and b play each other,
and one of them must win, thereby gaining a score of one; so they cannot both have a score of zero. Thus,
the score sequence scores(T ) contains at most one zero. Thus, if we have a sequence with two or more zeros,
it cannot be realisable. □

Video (Lemma 13.17 to Lemma 13.20)

To formulate Landau’s Theorem, it will be convenient to have the following result.

Lemma 13.17. For 0 ≤ k ≤ n we have

(
n

2

)
=

(
k

2

)
+ k(n− k) +

(
n− k

2

)
.

Algebraic proof.(
k

2

)
+ k(n− k) +

(
n− k

2

)
= 1

2k(k − 1) + k(n− k) + 1
2 (n− k)(n− k − 1)

= 1
2k

2 − 1
2k + nk − k2 + 1

2n
2 − nk + 1

2k
2 − 1

2n+ 1
2k

= 1
2n

2 − 1
2n = 1

2n(n− 1) =

(
n

2

)
.

□

Bijective proof. Put N = {1, . . . , n}, and let K ⊆ N be any subset of size k, so N \K has size n− k. Then

•
(
n
2

)
is the number of subsets T ⊆ N with |T | = 2.

•
(
k
2

)
is the number of such subsets T with both elements of T in K.

• k(n− k) is the number of such subsets T with one element in K and the other in N \K.

•
(
n−k
2

)
is the number of such subsets T with both elements of T in N \K.

From this it is clear that
(
n
2

)
=

(
k
2

)
+ k(n− k) +

(
n−k
2

)
. □

Proposition 13.18. Let s = (s1, . . . , sn) be a sequence of nonnegative integers in descending order, and
suppose that total(s) =

(
n
2

)
. Put N = {1, . . . , n}. Then the following conditions are equivalent:

(a) For all U ⊆ N with |U | = k we have sU ≥
(
k
2

)
.

(b) For all U ⊆ N with |U | = k we have sU ≤ k(n− k) +
(
k
2

)
.

(c) For all k we have lastk(s) ≥
(
k
2

)
.

(d) For all k we have firstk(s) ≤ k(n− k) +
(
k
2

)
.

Proof. First suppose that (a) holds; we will prove that (b) also holds. Indeed, if U ⊆ N with |U | = k, then

|U c| = n− k, so (a) tells us that sUc ≥
(
n−k
2

)
, so(

n

2

)
− sUc ≤

(
n

2

)
−

(
n− k

2

)
.
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On the other hand, we have sU + sUc = total(s) =
(
n
2

)
, so

(
n
2

)
− sUc = sU . Moreover, Lemma 13.17 shows

that
(
n
2

)
−

(
n−k
2

)
= k(n − k) +

(
k
2

)
. Thus, the above inequality can be rewritten as sU ≤ k(n − k) +

(
k
2

)
,

as required. This completes the proof that (a) implies (b), and the whole argument can be reversed in a
straightforward way to prove that (b) implies (a), so (a) and (b) are equivalent.

Now consider all the numbers sU for subsets U with |U | = k. Note that firstk(s) is one of these numbers
(for U = {1, . . . , k}) and lastk(s) is also one of these numbers (for U = {n − k + 1, . . . , n}). In fact,
since the numbers si are in decreasing order, it is clear that firstk(s) is the largest of these numbers sU ,

and lastk(s) is the smallest. Thus, if lastk(s) ≤
(
k
2

)
, then sU ≤

(
k
2

)
for all U with |U | = k. Similarly, if

firstk(s) ≤ k(n− k)+
(
k
2

)
, then sU ≤ k(n− k)+

(
k
2

)
for all U with |U | = k. This shows that (a) is equivalent

to (c) and (b) is equivalent to (d). □

Definition 13.19. We say that a sequence s is plausible if it has the equivalent conditions described in
Proposition 13.18.

The easy half of Landau’s result is as follows.

Lemma 13.20. Every realisable sequence is plausible.

Proof. Let s be a realisable sequence of length n. As s is realisable, we can find an n-player tournament T
such that si is the score of player i. Let U be a set of k players, so that sU is the total of their scores. We
then have sU = p + q, where p is the total of scores that people in U earn by playing each other, and q is
the total of scores that they earn by playing other people. The members of U play

(
k
2

)
games against each

other, and each of these earns a score of 1 for one or the other of the players, so we get p =
(
k
2

)
. On the

other hand, the members of U play k(n − k) games against people who are not in U . They might lose all
of these games, or they might win all of them, or something in between; so 0 ≤ q ≤ k(n − k). From this it
follows that (

k

2

)
≤ sU ≤ k(n− k) +

(
k

2

)
,

so conditions (a) and (b) in Proposition 13.18 are satisfied. We have shown that conditions (a) to (d) are all
equivalent, so in fact they are all satisfied. □

Example 13.21. For a consistent tournament of size n we have si = n − i for all i, and it is not hard to
deduce that lastk(s) =

(
k
2

)
and firstk(s) = k(n − k) +

(
k
2

)
, so the score sequence is plausible, as predicted

by Lemma 13.20. For an odd modular tournament of size 2m + 1, we have si = m for all i. Thus, for any
set U with |U | = k, we have sU = mk. On the other hand, we have 2m + 1 = n ≥ k so m ≥ (k − 1)/2 so

mk ≥ k(k − 1)/2 =
(
k
2

)
. This means that sU ≥

(
k
2

)
, so again the score sequence is plausible, as predicted by

Lemma 13.20. Finally, the score sequence for Example 13.3 was s = (3, 2, 2, 2, 1). This has

last1(s) = 1 = 1 ≥ 0 =
(
1
2

)
last2(s) = 2 + 1 = 3 ≥ 1 =

(
2
2

)
last3(s) = 2 + 2 + 1 = 5 ≥ 3 =

(
3
2

)
last4(s) = 2 + 2 + 2 + 1 = 7 ≥ 6 =

(
4
2

)
last5(s) = 3 + 2 + 2 + 2 + 1 = 10 = 10 =

(
5
2

)
.

Once again, we see that the score sequence is plausible.

The hard part is the converse:

Theorem 13.22 (Landau’s Tournament Theorem). Every plausible sequence is realisable.

Proof.
Interactive demo

Video
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Let s = (s1, . . . , sn) be a plausible sequence, so s1 ≥ · · · ≥ sn and s1 + · · · + sk ≥
(
k
2

)
for all k, and

s1+· · ·+sn =
(
n
2

)
. We will set up a kind of team allocation problem, to which we can apply Proposition 12.13.

Consider a pair of players, say {Alice,Bob}. As in Remark 13.4, we can imagine making a medal which says
“Alice vs Bob” (but does not say who won). Alice or Bob could receive this medal, but no one else could.
We can repeat this for every pair of players, giving a set of medals x1, . . . , xN , where N =

(
n
2

)
. For the

medal ceremony, we recruit children c1, . . . , cN , and give medal xj to child cj . To specify the tournament,
we just need to specify which children present medals to each player (because this determines who gets each
medal, and thus who wins each game). Player i must win si games, so they must receive si medals, so they
need a team of si children to present medals to them. These children must be qualified, in the sense that
they must carry a medal with player i’s name on it. If we can show that this team allocation problem is
solvable, this will give a tournament with the required scores. For this, we use the numerical condition in
Proposition 12.13. Consider a set U of players, and put k = |U |. Let CU be the set of candidates for the
corresponding jobs. Equivalently, CU is the set of children who carry a medal that could be presented to
one of the players in U . There are

(
k
2

)
medals where both names are in U , and k(n− k) medals where one

name is in U and the other is not; thus, we have |CU | =
(
k
2

)
+k(n−k). The total number of children needed

to present medals to players in U is
∑

i∈U si = sU . Thus, the numerical condition in Proposition 12.13

is that
(
n
k

)
+ k(n − k) ≥ sU for all U . This is is precisely the same as the plausibility condition from

Proposition 13.18, and we are assuming that that condition is satisfied. Thus, Proposition 12.13 tells us that
the team allocation problem is solvable, as required. □

Example 13.23. Consider the sequence s = (5, 3, 2, 2, 2, 1), of length 6. We have

1 = 1 ≥ 0 =
(
1
2

)
2 + 1 = 3 ≥ 1 =

(
2
2

)
2 + 2 + 1 = 5 ≥ 3 =

(
3
2

)
2 + 2 + 2 + 1 = 7 ≥ 6 =

(
4
2

)
3 + 2 + 2 + 2 + 1 = 10 ≥ 10 =

(
5
2

)
5 + 3 + 2 + 2 + 2 + 1 = 15 = 15 =

(
6
2

)
This shows that the sequence is plausible, so Landau’s theorem tells us that it is possible to find a corre-
sponding tournament. In fact, the following tournament works:

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

W

L

1

2

3

4

5

6

1 2 3 4 5 6

Example 13.24. For the sequence s = (4, 4, 4, 2, 1, 1, 1) we have last4(s) = 5, which is strictly less than(
4
2

)
= 6, so the sequence is not plausible, so it cannot be the score sequence for a tournament.

We next discuss two ways of combining tournaments.

Video (Definition 13.25 to Example 13.31)
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Definition 13.25. Let T be a tournament with n players and scores t1 ≥ · · · ≥ tn. Let U be another
tournament, with m players and scores u1 ≥ · · · ≥ um. We then let T : U denote the combined tournament
with n+m players given by the following rules:

(a) For a game between two players in T , the result is the same as it was in T .
(b) For a game between two players in U , the result is the same as it was in U .
(c) For a game with one player from T and one player from U , the player from T always wins.

Note that the players from U have the same score in the combined tournament as they did in U . However,
the players from T have their original score plus an extra m points for beating all the players from U . In
particular, the players from T all have at least m points, but the players from U all have less than m points.
Thus, the score sequence for the combined tournament is

t1 +m ≥ t2 +m ≥ · · · ≥ tn +m ≥ u1 ≥ · · · ≥ um.

Remark 13.26. You can think of T as the Sheffield primary school football league, and U as the premier
league. One year they decide to have a joint tournament for charity, and of course the professionals always
let the children win; the resulting tournament is T : U .

Example 13.27. Suppose we want to construct a tournament with score sequence (7, 7, 7, 7, 7, 2, 2, 2, 2, 2).
We start with an odd modular tournament T with players (1, 2, 3, 4, 5) and scores (2, 2, 2, 2, 2). We then let
U be another copy of T , with players (6, 7, 8, 9, 10) and scores (2, 2, 2, 2, 2) again. The combined tournament
T : U then has scores (7, 7, 7, 7, 7, 2, 2, 2, 2, 2) as required.

Definition 13.28. Again let T and U be two tournaments, with n and m players respectively. We can
combine them in a different way to produce a tournament T ∗ U as follows. The players are pairs (i, j),
where i is a player from T and j is a player from U , so there are nm players altogether. Consider two players
(i, j) and (i′, j′) with (i, j) ̸= (i′, j′), so either i ̸= i′ or (i = i′ and j ̸= j′).

(a) If i ̸= i′ then the result of (i, j) playing (i′, j′) in T ∗U is the same as the result of i playing i′ in T .
(b) If i = i′ and j ̸= j′ then the result of (i, j) playing (i′, j′) in T ∗ U is the same as the result of j

playing j′ in U .

Remark 13.29. You can think of T as a popularity contest between various potential birthday presents, and
U as a popularity contest between various kinds of fancy bags. Then T ∗ U is the corresponding popularity
contest between presents-in-bags, where we assume that the recipient mostly cares about the present, and
only compares the bags if the presents are the same.

Lemma 13.30. Suppose that the scores in T are t1 ≥ · · · ≥ tn and the scores in U are u1 ≥ · · · ≥ um. Then
the score for player (i, j) in T ∗ U is mti + uj.

Proof. Let Pi be the set of players beaten by i in T , and let Qj be the set of players beaten by j in U . We
then have |Pi| = ti and |Qj | = uj . The players beaten by (i, j) are then the players (i′, j′) with either i′ ∈ Pi

and j′ arbitrary, or i′ = i and j′ ∈ Qj . There are mti possibilities of the first type, and uj possibilities of
the second type. This shows that the score for (i, j) is mti + uj as claimed. □

Example 13.31. Let T be an odd modular tournament of size n = 3, so the scores are (1, 1, 1), or in other
words ti = 1. Let U be a consistent tournament of size m = 5, so the scores are (4, 3, 2, 1, 0), or in other
words uj = 5− j. In T ∗U , the score for (i, j) is mti + uj = 5+ 5− j = 10− j. Each number appears three
times, because there are three possible choices for i, so the full score sequence is

(9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5).

We could instead consider the tournament U ∗T . Here the score for (j, i) is nuj + ti = 3(5− j)+1 = 16−3j.
The full score sequence is

(13, 13, 13, 10, 10, 10, 7, 7, 7, 4, 4, 4, 1, 1, 1).

14. Latin squares

Definition 14.1. Given nonempty finite sets P , Q and N , a Latin rectangle L is a system of elements
Lij ∈ N for i ∈ P and j ∈ Q such that
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(a) For each i ∈ P , all the elements in the row Li∗ are distinct. In more detail, if i ∈ P and j, j′ ∈ Q
with j ̸= j′, then we must have Lij ̸= Lij′ .

(b) For each j ∈ Q, all the elements in the column L∗j are distinct. In more detail, if j ∈ Q and i, i′ ∈ P
with i ̸= i′, then we must have Lij ̸= Li′j .

We will usually write p = |P | and q = |Q| and n = |N |. Often (but not always) we will have P = {1, . . . , p}
or P = {0, . . . , p− 1} and similarly for Q and N .

Remark 14.2. In each column we have p entries from N which must all be different, and in each column
we have q entries from N which must all be different. This can only work if p, q ≤ n. Thus, if we fix N with
|N | = n, then the maximum possible size of a Latin rectangle is n× n.

Definition 14.3.
Interactive demo

A Latin square of size n is a Latin rectangle with |P | = |Q| = |N | = n.

Note that in a Latin square each row contains n different entries taken from N , but |N | = n, so each
row must contain each element of N precisely once. Similarly, each column must contain each element of N
precisely once.

Example 14.4. The matrix [
1 4 3
5 2 1

]
gives a Latin rectangle with P = {1, 2} and Q = {1, 2, 3} and N = {1, 2, 3, 4, 5} so p = 2 and q = 3 and
n = 5.

Example 14.5. The matrix 
1 4 3 2
2 3 4 1
4 1 2 3
3 2 1 4


gives a Latin square with P = Q = N = {1, 2, 3, 4} and p = q = n = 4.

Example 14.6. Let G be any finite group, with |G| = n. Take P = Q = N = G and Lg,h = g ∗ h. I claim
that this is a Latin square. Indeed, if Lg,h = Lg,h′ then g ∗h = g ∗h′ and we can multiply on the left by g−1

to see that h = h′. By the contrapositive, if h ̸= h′ then Lg,h ̸= Lg,h′ . By a similar argument, if g ̸= g′ then
Lg,h ̸= Lg′,h, as required.

Interactive demo

Example 14.7. As a special case of the above, we can consider the group Z/n = {0, . . . , n − 1}, with
addition mod n as the group operation. This gives a Latin square with P = Q = N = {0, . . . , n − 1} and
Lij = i+ j (mod n). For example, when n = 5 we get

L =


0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

 .

This example shows that for any n, there is at least one n× n Latin square.

Interactive demo

Theorem 14.8.
Video

Let L be a Latin rectangle with p < q = n (so L has the maximum possible width, but not the maximum
possible height). Then L can be extended by adding extra rows to make an n× n Latin square.
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Remark 14.9. To prove this theorem and the next theorem, we will apply Hall’s Theorem and related
results to a certain matching problem. This can be interpreted as a job allocation problem, in the following
way. Suppose that N is a set of n students on a work experience scheme, and that Q is a set of n jobs, and
that P = {1, . . . , n}. Each student is supposed to do each of the jobs for one day. On day i, job j is done
by student Lij . No student can do more than one job at the same time, so for fixed i, the entries Lij must
all be different. No student does the same job more than once, so for fixed j, the entries Lij must all be
different. Thus, the matrix L must be a Latin square.

In the context of Theorem 14.8, we have constructed the rota for days 1 to p, and our task is to complete
the rota for days p+ 1 to n.

The proof of Theorems 14.8 and 14.22 will also depend on some extra definitions which we now explain.

Definition 14.10. Let L be a Latin rectangle with parameters p, q, n. For k ∈ N we let mL(k) denote the
number of occurrences of k in L, and we call this the multiplicity of k. We also put eL(k) = mL(k)+n−p−q
and call this the excess of k.

Example 14.11. For L =

[
1 4 3 5
5 3 1 4

]
we have (p, q, n) = (2, 4, 5) so n− p− q = −1 and

mL(1) = 2 mL(2) = 0 mL(3) = 2 mL(4) = 2 mL(5) = 2

eL(1) = 1 eL(2) = −1 eL(3) = 1 eL(4) = 1 eL(5) = 1.

Remark 14.12. The occurrences of k in L must appear in different rows, so mL(k) can also be described
as the number of rows that contain k. Similarly, the occurrences of k in L must appear in different columns,
so mL(k) can also be described as the number of columns that contain k.

Lemma 14.13. Suppose that q = n, so that L has the maximum possible width. Then we have mL(k) = p
and eL(k) = 0 for all k. Similarly, if p = n (so that L has the maximum possible height) then mL(k) = q
and eL(k) = 0 for all k.

Proof. Suppose that q = n. Then each row has n different elements but |N | = n so each element k ∈ N must
occur precisely once in each of the p rows. From this we see that mL(k) = p and so eL(k) = p+ n− p− q.
As q = n this simplifies to eL(k) = 0. The case where p = n is essentially the same. □

Proof of Theorem 14.8. Let L be a p × n Latin rectangle. It will be enough to show that we can add one
more row to get a (p+ 1)× n Latin rectangle, because we can then repeat the process if necessary. We will
interpret the problem as in Remark 14.9.

For j ∈ Q, let Cj ⊆ N be the set of students who are allowed to do job j on day p+1. These are just the
students who have not already done job j on any of days 1, . . . , p, or in other words

Cj = N \ {L1j , . . . , Lpj}.
We are assuming that L is a Latin rectangle, so we have followed the rules on days 1 to p, so students
L1j , . . . , Lpj must all be different, so |Cj | = n− p. To make the new row, we just need to solve the usual job
allocation problem with candidate sets Cj . For each k ∈ N put

Rk = {j | k ∈ Cj},
which is the set of jobs for which student k is qualified (in the sense that they have not already done that
job). We will use Proposition 12.4: if there is a constant d such that |Cj | = d for all j and |Rk| ≤ d for all
k, then the allocation problem is solvable. We will take d = n − p; we have already seen that |Cj | = d for
all j. On the other hand, Rk is just the set of columns where we are allowed to put k in the new row, or
in other words, the set of columns that do not already contain k. The number of columns that contain k is
mL(k), which is p as we explained in Lemma 14.13. Thus, the number of columns that do not contain k is
|Rk| = n− p = d as required. Thus, Proposition 12.4 is applicable, so we can solve the allocation problem,
and the solution gives us an extra row. □

Example 14.14. Consider the following Latin rectangle, with p = 2 and q = n = 5:

L =

[
1 2 4 5 3
5 1 2 3 4

]
.
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Recall that Cj is the set of possibilities for position j in the next row. For example, in column 2 we already
have a 2 and a 1, so these are not allowed, so C2 = N \ {2, 1} = {3, 4, 5}. We can display all the sets Cj as
follows:  1 2 4 5 3

5 1 2 3 4
234 345 135 124 125


(We have used abbreviated notation, e.g. 234 for {2, 3, 4}.) To make the new row, we must choose one
element from the possibilities in each column, making sure that we never choose the same element twice.
Corollary 55 tells us that this is possible, but does not tell us exactly how to do it. However, in this case it
is not difficult: in each column we can just take the first choice that has not already been used. This gives
2, 3, 1, 4, 5 as the new row. We can write in this new row and display the possibilities for row 4 as follows:

1 2 4 5 3
5 1 2 3 4
2 3 1 4 5
34 45 35 12 12


Again, in each column we can take the first choice that has not already been used. This gives row 4 and
leaves only one possibility for row 5. We end up with the following Latin square:

1 2 4 5 3
5 1 2 3 4
2 3 1 4 5
3 4 5 1 2
4 5 3 2 1


Corollary 14.15. Let L be a Latin rectangle with q < p = n (so L has the maximum possible height, but
not the maximum possible width). Then L can be extended by adding extra columns to make an n× n Latin
square.

Proof. Note that the transpose LT is a Latin square of maximum possible width, so we can use Theorem 14.8
to extend it to a Latin square, then take the transpose again at the end. This just amounts to doing the
same steps as before, but with the roles of rows and columns exchanged. □

Now consider a Latin rectangle where both p and q are strictly less than n, so neither Theorem 14.8 nor
Corollary 14.15 is applicable. Can we still extend it to give an n × n Latin square? It is not hard to find
examples where this is not possible.

Example 14.16. Take P = Q = {1, 2} and N = {1, 2, 3} and L =

[
2 3
3 2

]
. We could try to extend this to

a 3× 3 Latin square as follows:  2 3 a
3 2 b
c d e

 .

To avoid a clash in row 1, we must take a = 1. To avoid a clash in row 2, we must also take b = 1. However,
this creates an unavoidable clash in column 3. Thus, it is impossible to extend L.

Example 14.17. Take P = Q = {1, 2, 3, 4} and N = {1, . . . , 6} and

L =


6 1 2 3
5 6 3 1
1 3 6 2
3 2 1 4

 .

It turns out that it is not possible to extend this to a 6× 6 Latin square. It is a good exercise to prove this
directly. However, we will deduce it from a general theorem instead. We can list the multiplicity and excess
of the elements of N as follows:

k 1 2 3 4 5 6
mL(k) 4 3 4 1 1 3
eL(k) 2 1 2 −1 −1 1
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It turns out that the key point is that some excesses are negative.

Video (Definition 14.18 to Theorem 14.22)

Definition 14.18. Let L be a Latin rectangle. We say that an element k ∈ N is plausible if eL(k) ≥ 0.
More precisely, we say that k is barely plausible if eL(k) = 0, and very plausible if eL(k) > 0.

Proposition 14.19. If L can be extended to an n× n Latin square, then every element k ∈ N is plausible
for L.

Proof. Choose a Latin square extending L. This will have the form[
L L′

L′′ L′′′

]
,

where L′, L′′ and L′′′ have shape p × (n − q), (n − p) × q and (n − p) × (n − q). Let L∗ be the top part,
consisting of L and L′. This is a p× n Latin rectangle, so Lemma 14.13 tells us that

mL(k) +mL′(k) = mL∗(k) = p,

so mL(k) = p−mL′(k). On the other hand, L′ has n− q columns, and there is at most one occurrence of k
per column, so mL′(k) ≤ n− q, so p−mL′(k) ≥ p+ q − n. Putting this together, we get mL(k) ≥ p+ q − n
and so eL(k) = mL(k) + n− p− q ≥ 0. □

In Example 14.17, we see that 4 and 5 have negative excess so they are not plausible, so there cannot be
any extension to a 6× 6 Latin square. We now discuss another example.

Example 14.20. Consider the following Latin rectangle with p = 4 and q = 5 and n = 7:

L =


5 6 1 3 2
6 5 2 4 7
1 4 3 5 6
4 7 5 6 1

 .

The multiplicities and excesses are as follows:

k 1 2 3 4 5 6 7
mL(k) 3 2 2 3 4 4 2
eL(k) 1 0 0 1 2 2 0

We have eL(k) ≥ 0 so all elements are plausible, so we might guess that L can be extended to a 7 × 7
Latin square. However, Proposition 14.19 does not give us any guarantees about this. If we had found that
eL(k) < 0 for some k, then Proposition 14.19 would tell us that is definitely no extension. However, when
eL(k) ≥ 0 for all k we can only say (for the moment) that the question remains open. To go beyond this we
need another lemma and another theorem.

Lemma 14.21. Let L be a p × q Latin rectangle, where 0 < p < n and 0 < q ≤ n, and suppose that every
k ∈ N is plausible for L. Then we can add an extra row to obtain a (p+ 1)× q Latin rectangle L′ such that
every k ∈ N is still plausible for L′.

Proof. We will again interpret this in terms of Remark 14.9. Here we have chosen students to do jobs 1 to q
on days 1 to p, but we have not yet decided anything about jobs q + 1 to n (perhaps the relevant managers
are still on holiday). Our immediate task is to allocate students to jobs 1 to q on day p+ 1.

We again put d = n−p > 0. We again have a job for each j ∈ Q, with candidates Cj = N \{L1j , . . . , Lpj},
so |Cj | = n−p = d. We again put Rk = {j | k ∈ Cj}, which corresponds to the set of columns not containing
k, or the set of jobs that student k can still do. Remark 14.12 tells us that the number of columns that do
contain k is mL(k), so the number of columns that do not contain k is |Rk| = q −mL(k). The plausibility
condition says that mL(k) + n − p − q ≥ 0, which translates to q − mL(k) ≤ n − p = d, so we see that
|Rk| ≤ d. In fact, we have |Rk| = d iff eL(k) = 0 iff k is barely plausible. The students with |Rk| = d will
be called “talented” (although in this model, the fact that they can still do many jobs is not really related
to talent). By Corollary 12.5, we can solve the job allocation problem in such a way that every talented
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student gets assigned a job for day p+ 1. By adding this as a new row, we get a new Latin rectangle L′ of
size (p+ 1)× q. Now note that

mL′(k) =

{
mL(k) + 1 if k is in the new row

mL(k) otherwise

so

eL′(k) = mL′(k) + n− p− q − 1 =

{
eL(k) if k is in the new row

eL(k)− 1 otherwise ,

so in particular eL′(k) ≥ eL(k) − 1 in all cases. Thus, if eL(k) > 0 then eL′(k) ≥ 0. On the other hand,
if eL(k) = 0 then k is barely plausible for L, so student k is “talented”, so k appears in the new row by
construction, so eL′(k) = eL(k) = 0. Thus, in all cases we have eL′(k) ≥ 0. □

Theorem 14.22. Let L be a p× q Latin rectangle, and suppose that every k ∈ N is plausible for L. Then
L can be extended to an n× n Latin square.

Proof. We can apply the lemma repeatedly until we get a n × q Latin rectangle, then we can apply Corol-
lary 14.15 to get an n× n Latin rectangle. □

Example 14.23. We now show how to extend the the rectangle from Example 14.20. The process is
controlled by the following two tables.

5 6 1 3 2 471 4
6 5 2 4 7 134 3
1 4 3 5 6 272 7
4 7 5 6 1 233 2

237 123 467 127 345 566 6
37 12 46 27 35 165 1
7 1 6 2 3 457 5


k 1 2 3 4 5 6 7

eL(k) 1 0 0 1 2 2 0
eL′(k) 1 0 0 1 1 1 0
eL′′(k) 0 0 0 1 1 0 0

In the left hand table, the top left block is the original matrix L. In the right hand table, the second row
shows the excesses of 1, . . . , 7 in L; in particular, the numbers 2, 3 and 7 have eL(k) = 0 so they are barely
plausible. We want to add a new row, making sure that we include the barely plausible numbers 2, 3 and
7. The possibilities for columns 1, . . . , 6 are 237, 123, 467, 127 and 345, as shown in row 5 on the left. From
these sets we choose 2, 3, 7, 1 and 4, as indicated by the bold entries in row 5. This gives a 5 × 5 Latin
rectangle which we call L′. For the next step, we need to know the excesses for L′, which we denote by
eL′(k). As we saw in the proof of Lemma 14.21, we have eL′(k) = eL(k) if k appears in the new row, and
eL′(k) = eL(k) − 1 if k does not appear in the new row. The resulting values are shown in row 3 of the
right hand table. In particular, 2, 3 and 7 are barely plausible for L′. To get the potential entries for row
6, we simply take the sets of potential entries from row 5 and remove the bold ones, leaving 37, 12, 46, 27
and 35. We must choose five distinct numbers, one from each of these sets, in such a way that the barely
plausible numbers 2, 3 and 7 are included. We choose 3, 2, 4, 7, 5, as indicated by the bold entries in row
6. This gives a 6 × 5 Latin rectangle which we call L′′. The excesses for E′′ are again shown in the right
hand table. However, we do not really need them, because there is now only one possible way to fill in row
7, namely (7, 1, 6, 2, 3). This gives a 7 × 5 Latin rectangle. As this has the maximum possible height, we
are back in the context of Corollary 14.15, and we do not need to keep track of excesses any more. To the
right of the vertical bar, we have written the possible entries for column 7. As our first step (indicated by
the superscript 1) we decide to try choosing 7 for the entry in row 1. For the second step (indicated by the
superscript 2) we consider row 3. The possible choices there are 2 and 7, but we already used 7 for row 1,
so we must use 2 for row 3. For the third step, we consider row 4. The possible choices there are 2 and 3,
but we already used 2 for row 3, so we must use 3 for row 4. Continuing in the same way, we must use 1 in
row 2, then 6 in row 6, then 5 in row 5, then 4 in row 7. This gives (7, 1, 2, 3, 5, 6, 4) as column 6, and leaves
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(4, 3, 7, 2, 6, 1, 5) as the only possibility for column 7. We end up with the following Latin square:

5 6 1 3 2 7 4
6 5 2 4 7 1 3
1 4 3 5 6 2 7
4 7 5 6 1 3 2
2 3 7 1 4 5 6
3 2 4 7 5 6 1
7 1 6 2 3 4 5


Interactive demo

We now discuss some facts about the number of possible n× n Latin squares.

Definition 14.24. We let Ln denote the set of all Latin squares L with P = Q = N = {1, . . . , n}. We will
find |Ln| for n ≤ 4. We say that a Latin square L ∈ Ln is reduced if the first row is (1, 2, . . . , n) and the first
column is also (1, 2, . . . , n). We write Rn for the set of reduced Latin squares.

Example 14.25. For the degenerate case n = 1 the only possible Latin square is L =
[
1
]
, so L1 = R1 and

|L1| = |R1| = 1.

Example 14.26. For n = 2 we have L2 =

{[
1 2
2 1

]
,

[
2 1
1 2

]}
. The first of these lies in R2 but the second

does not. We therefore have |R2| = 1 and |L2| = 2.

Example 14.27. For n = 3 there are 12 Latin squares, as follows:1 2 3
2 3 1
3 1 2

 1 2 3
3 1 2
2 3 1

 1 3 2
3 2 1
2 1 3

 1 3 2
2 1 3
3 2 1

 2 1 3
1 3 2
3 2 1

 2 1 3
3 2 1
1 3 2

2 3 1
3 1 2
1 2 3

 2 3 1
1 2 3
3 1 2

 3 1 2
1 2 3
2 3 1

 3 1 2
2 3 1
1 2 3

 3 2 1
2 1 3
1 3 2

 3 2 1
1 3 2
2 1 3


Of these only the first lies in R3. Thus, we have |R3| = 1 and |L3| = 24.

Proposition 14.28. For any n we have |Ln| = n!(n− 1)!|Rn|.

Proof. (a) We can permute the columns of a Latin square and it will still be a Latin square.
(b) We can also permute the rows of a Latin square and it will still be a Latin square.
(c) There is a unique way to permute the columns so that the first row becomes (1, . . . , n).
(d) After we have done this, the top left entry will be 1, and the first entries in columns 2, . . . , n will

therefore be 2, . . . , n in some order. Thus, there is a unique way to permute rows 2, . . . , n so that
the first column becomes 1, . . . , n. We now have a Latin square in Rn.

By thinking about these steps in the reverse order, we obtain the following fact. We can obtain any Latin
square in Ln by starting with a square in Rn, permuting rows 2, . . . , n in any of (n− 1)! possible ways, then
permuting the columns in any of n! possible ways. The claim is clear from this. □

Proposition 14.29. We have |R4| = 4 and so |L4| = 4!× 3!× 4 = 576.

Proof. We claim that R4 consists of the following 4 squares. The superscripts are just there to help us follow
the proof.

L1 =


1 2 3 4
2 30∗ 42 11

3 44 16 25

4 13 27 38

 L2 =


1 2 3 4
2 40∗ 11 32

3 13 46 25

4 34 27 18

 L3 =


1 2 3 4
2 10∗ 41 32

3 43 15∗ 26

4 34 27 18

 L4 =


1 2 3 4
2 10∗ 41 32

3 43 25∗ 16

4 34 17 28


The numbers in the superscripts indicate the order in which we should think about the entries; the stars
indicate places where we have a choice about what to do.
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The first row and column have to be (1, 2, 3, 4). Thus, the first place where we have any choice is the (2, 2)
position, which we have marked with the superscript 0∗. We already have a 2 in the corresponding row (and
also in the corresponding column), so we cannot put a 2 in this position; we must have a 3, a 4 or a 1. For
square L1 we choose to put a 3 in the (2, 2) position. It turns out that we then have no more choices. To
see this, consider the superscript 1, which appears in position (2, 4) in L1. There we have already placed a
2 and a 3 in the same row and a 4 in the same column, so we have to put a 1 in that slot. Now consider the
superscript 2, which appears in position (2, 3) in L1. We have already placed 1, 2 and 3 in the same row, so
we are forced to put 4 in this slot. Now continue with the positions with superscripts 3, 4, . . . , 8; we again
see that there is never any choice, and we have to fill in the entries as in L1. Thus, L1 is the only possible
Latin square in R4 that has a 3 in position (2, 2). Similarly, L2 is the only Latin square in R4 that has a
4 in position (2, 2). The only other possibility is to put a 1 in position (2, 2), as in L3. Just as in the case
of L1 and L2, we find that there is no choice about what to put in the positions with superscripts 1, . . . , 4.
However, when we get to the superscript 5∗ in position (3, 3), we find that we do have a choice: we can
either put in a 1 or a 2. If we put in a 1 then we are forced to fill in the remaining 3 slots as in L3, but if we
put in a 2 then we are forced to fill in the remaining 3 slots as in L4. We thus have R4 = {L1, L2, L3, L4}
as claimed.

Interactive demo

□

Remark 14.30. The numbers |Rn| grow very quickly as n increases:

n |Rn|
1 1
2 1
3 1
4 4
5 56
6 9, 408
7 16, 942, 080
8 535, 281, 401, 856

We will not prove any of this.

We now start to discuss the theory of orthogonal Latin squares. We will give an example before the
definition.

Example 14.31. Consider the following matrices:

L =

0 1 2
1 2 0
2 0 1

 M =

0 2 1
1 0 2
2 1 0

 L ∗M =

00 12 21
11 20 02
22 01 10


Both L and M are Latin squares. The matrix L ∗M is formed by merging L and M in an obvious way: in
symbols, the entry (L∗M)ij is the ordered pair (Lij ,Mij). There are 9 possible pairs uv with u, v ∈ {0, 1, 2},
as follows:

00, 01, 02, 10, 11, 12, 20, 21, 22.

It is not hard to check that each of these pair occurs precisely once in L ∗M .

Definition 14.32. Let L and M be two n × n Latin squares, with the same sets P , Q and N . Let L ∗M
be the matrix with entries (L ∗M)ij = (Lij ,Mij) ∈ N2 for each i ∈ P and j ∈ Q. We say that L and M
are orthogonal if each of the n2 elements of N2 occurs precisely once in L ∗M . Equivalently, L and M are
orthogonal if the entries in L ∗M are all different.

Interactive demo

69

http://strickland1.org/courses/MAS334/demos/latin4.html
http://strickland1.org/courses/MAS334/demos/orthogonal.html


Example 14.33. Consider the following matrices:

L =

1 2 3
3 1 2
2 3 1

 M =

1 a b
c d e
f g 2

 L ∗M =

11 2a 3b
3c 1d 2e
2f 3g 12


We will try to find a, . . . , g such that M is a Latin square and is orthogonal to L.

• L ∗ M must contain 13 somewhere, and this can only happen if d = 3 so that 13 appears as the
middle entry.

• In M , entry b lies in the same row as 1 and in the same column as 2, so it must be different from 1
and 2, so it must be equal to 3. By the same logic we also have f = 3.

• Now M is as shown on the left below. To make this a Latin square, each row must contain 1, 2 and
3, and each column must contain 1, 2 and 3. The only way to achieve this is to take a = c = 2 and
e = g = 1, giving the matrix shown on the right below.

M =

1 a 3
c 3 e
3 g 2

 =

1 2 3
2 3 1
3 1 2


• We now have

L ∗M =

11 22 33
32 13 21
23 31 12

 .

Inspection shows that each of the 9 possible pairs 11, 12, 13, 21, 22, 23, 31, 32, 33 appears precisely
once in L ∗M , so we have succeeded in finding a Latin square that is orthogonal to L.

We now consider a different problem. Given n > 0, can we find a long list of n×n Latin squares L1, . . . , Lr

such that Lu and Lv are orthogonal when u ̸= v? Our first result gives an upper bound on the possible
length of such a list.

Theorem 14.34. Suppose we have a list L1, . . . , Lr of mutually orthogonal Latin squares of size n. Then
r ≤ n− 1.

Proof. Look at the first two rows of Lu:

1 mu n

x

x1

2

In position (2, 1) (at the beginning of the second row), we have some number x ∈ {1, . . . , n}. Because Lu

is a Latin square, every number must appear in every row. In particular, x must also appear in row 1. It
cannot appear in position (1, 1), because we would then have two x’s in the first column. So x must also
appear at position (1,mu) for some mu ∈ {2, . . . , n}. We have now defined numbers m1, . . . ,mr; we claim
that they are all different. Indeed, suppose that v ̸= u, so the first two rows of Lv have the form

1 mv n

y

y1

2

If mu and mv were the same, then in Lu ∗ Lv we would have a pattern like this:

1 mu = mv n

xy

xy1

2
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so xy would appear twice in Lu ∗Lv. However, Lu and Lv are assumed to be orthogonal, so each pair occurs
precisely once in Lu ∗ Lv, so xy cannot appear twice, so mv must be different from mu.

We now know that the numbers m1, . . . ,mr are all different and all lie in {2, . . . , n}. This is clearly only
possible if r ≤ n− 1. □

We now see that the maximum possible length of a list of mutually orthogonal n× n Latin squares is at
most n − 1. Can we achieve this upper bound? We can give a key example using modular arithmetic. We
first need to recall a basic fact.

Proposition 14.35. Let p be a prime. Then every nonzero element of the ring Z/p has a multiplicative
inverse. Thus, Z/p is a field, and the set (Z/p) \ {0} is a group under multiplication.

Proof. Any nonzero element of Z/p is represented by an integer a with 0 < a < p. Let d be the gcd of a and
p, so d = au + pv for some integers u and v (by the euclidean algorithm). Now d must divide p, and p is
prime, so d = 1 or d = p. However, d must also divide a, and p does not divide a because 0 < a < p, so we
must have d = 1. This means that au+ pv = 1, so au = 1 (mod p), so u is an inverse for a in Z/p. A field is
just a nontrivial commutative ring in which every nonzero element is invertible, so we see that Z/p is a field.
Now let b be another nonzero element, and let v be inverse to b. We then have (ab)(uv) = (au)(bv) = 1. This
would be impossible if ab were zero mod p, so we must have ab ̸= 0. This means that the set (Z/p) \ {0} is
closed under multiplication, and it is now easy to see that it is a group. □

Remark 14.36. The proposition implies that if a, b ∈ Z/p with b ̸= 0 then the element a/b = a.b−1 is
well-defined, and that division has all the usual algebraic properties, provided that we are careful not to
divide by anything that could be zero.

Proposition 14.37. Let p be a prime. For 0 < u < p define Lu
ij = i + uj (mod p). Then Lu is a Latin

square (with P = Q = N = Z/p). Moreover, Lu and Lv are orthogonal if u ̸= v (so we have a list of p− 1
mutually orthogonal Latin squares of size p).

Proof. If Lu
ij = Lu

i′j we have i+ uj = i′ + uj so i = i′. Similarly, if Lu
ij = Lu

ij′ then i+ uj = i+ uj′ in Z/p.
We can rearrange to get u.(j − j′) = 0 but u is invertible in Z/p so we can multiply by u−1 to get j − j′ = 0
and so j = j′ (in Z/p). This shows that Lu is a Latin square.

Now consider Lu ∗ Lv, where 0 < u, v < p with u ̸= v, so (Lu ∗ Lv)ij = (i+ uj, i+ vj). We want to show
that every pair (x, y) ∈ (Z/p)2 appears precisely once in this table, or in other words that there is a unique
pair (i, j) with(i + uj, i + vj) = (x, y), or that the simultaneous equations i + uj = x and i + vj = y have
a unique solution. These equations can be solved in the standard way to give i = (vx − uy)/(v − u) and
j = (x− y)/(u− v) as required. □

Remark 14.38. Now consider a number n that is a prime power, say n = pv for some prime number p and
some v > 1. In this case the ring Z/n is not a field, but there is a more complicated way to define a field F
with |F | = n. We will not discuss the construction here, but it can be found in most books on field theory.
Now suppose that u ∈ F with u ̸= 0 (so there are n− 1 possible choices for u). We can again define a Latin
square Lu with P = Q = N = F by Lu

ij = i + uj, and we again find that Lu and Lv are orthogonal when
u ̸= v. Thus, we have a list of n− 1 mutually orthogonal Latin squares of size n.

The first number that is not a prime or prime power is 6. This case is already hard.

Theorem 14.39. There are not even two mutually orthogonal Latin squares of size 6.

Proof. This was conjectured by Euler in the 18th century, and proved by Tarry in 1900. A more digestible
proof was given by Stinson in 1982. We will not give any details here. □

15. Block Designs

We now consider matching problems again, but from a rather different point of view. Before, we were
given a matching problem and we tried to solve it, or count the number of possible solutions. Here instead we
will try to find matching problems that have certain special properties, which in particular make them highly
symmetrical. Highly symmetrical combinatorial objects are always interesting and often have applications.
In particular, the material in this chapter can be used for efficient design of experiments where one wants to
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test multiple interacting factors without performing more tests than necessary. It can also be used to design
computer communication systems that can detect and correct some transmission errors.

Before, we had a set A of people and a set B of jobs, and for each job b ∈ B we had a subset Cb ⊆ A of
people who are qualified to do that job. For each person a we also considered the set Ra of jobs that they
are qualified to do. This can be expressed in symbols as Ra = {b ∈ B | a ∈ Cb}.

The framework in this chapter will be mathematically equivalent but we will follow tradition in using
slightly different terminology. We will have a set B of “blocks” and a set V of “varieties”. For each block
j ∈ B we have a corresponding subset Cj ⊆ V . For any variety p ∈ V we again define Rp = {j ∈ B | p ∈ Cj}.

Video (Definition 15.1 and Proposition 15.4)

Definition 15.1. Consider numbers v, b, r, k, λ > 0 with k < v and r < b. A block design with parameters
(v, b, r, k, λ) is a matching problem as above, with the following properties:

(a) |V | = v
(b) |B| = b
(c) |Rp| = r for all p ∈ V
(d) |Cj | = k for all j ∈ B
(e) |Rp ∩Rq| = λ for all p, q ∈ V with p ̸= q.

In words: there are v varieties and b blocks, every variety is in precisely r blocks, every block contains
precisely k varieties, every pair of distinct varieties is in precisely λ blocks.

Remark 15.2. As Cj ⊆ V and |Cj | = k and |V | = v it is automatic that k ≤ v. If k were equal to v
then that would mean that Cj = V for all j, which is like a job allocation problem in which every person
is qualified to do every job. However, we specified as part of the definition that k < v, so as to exclude this
uninteresting case. The condition r < b also has the same effect.

Example 15.3. Put B = {1, . . . , 12} and V = {1, . . . , 9} and

C1 = {1, 2, 3} C2 = {4, 5, 6} C3 = {7, 8, 9}
C4 = {1, 4, 7} C5 = {2, 5, 8} C6 = {3, 6, 9}
C7 = {1, 5, 9} C8 = {2, 6, 7} C9 = {3, 4, 8}
C10 = {1, 6, 8} C11 = {2, 4, 9} C12 = {3, 5, 7}

The corresponding sets Rp are

R1 = {1, 4, 7, 10} R2 = {1, 5, 8, 11} R3 = {1, 6, 9, 12}
R4 = {2, 4, 9, 11} R5 = {2, 5, 7, 12} R6 = {2, 6, 8, 10}
R7 = {3, 4, 8, 12} R8 = {3, 5, 9, 10} R9 = {3, 6, 7, 11}.

It is now visible that |V | = 9 and |B| = 12 and |Cj | = 3 for all j and |Rp| = 4 for all p. We also have

R1 ∩R2 = {1} R3 ∩R4 = {9} R3 ∩R6 = {6} R4 ∩R9 = {11}.
In fact, we have |Rp ∩Rq| = 1 for all p ̸= q, as we can see by a long but easy check of cases. Thus, the above
sets give a (9, 12, 4, 3, 1) block design.

Interactive demo

Proposition 15.4. If there is a (v, b, r, k, λ)-block design, then bk = vr and bk(k − 1) = λv(v − 1) and
r(k − 1) = λ(v − 1) and λ < r.

Proof. Put

X = {(j, p) ∈ B × V | p ∈ Cj}
= {(j, p) ∈ B × V | j ∈ Rp}.

We can use the first description to find |X|: there are b ways to choose j ∈ B, and then |Cj | = k ways to
choose p ∈ Cj , so |X| = bk. Alternatively, we can use the second description. There are v ways to choose
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p ∈ V , and then |Rp| = r ways to choose j ∈ Rp, so |X| = vr. By comparing these, we see that bk = vr.
Now put

Y = {(j, p, q) ∈ B × V × V | p, q ∈ Cj , q ̸= p}
= {(j, p, q) ∈ B × V × V | q ̸= p, j ∈ Rp ∩Rq}.

We can again use the first description to find |Y |: there are b ways to choose j ∈ B, then k ways to choose
p ∈ Cj , then k − 1 ways to choose a different element q ∈ Cj , giving |Y | = bk(k − 1). Alternatively, we
can use the second description: there are v ways to choose p ∈ V , then v − 1 ways to choose a different
element q ∈ V , then |Rp ∩ Rq| = λ ways to choose j ∈ Rp ∩ Rq, giving |Y | = λv(v − 1). By comparing
these, we get bk(k − 1) = λv(v − 1). We can now substitute our first equation bk = vr into our second
equation bk(k − 1) = λv(v − 1) and then divide by v to get r(k − 1) = λ(v − 1). Rearranging this, we get
λ/r = (k − 1)/(v − 1). As one of our axioms we assumed that k < v, so (k − 1)/(v − 1) < 1, so λ/r < 1, so
λ < r. □

Proposition 15.5. In any block design, we have v ≤ b.

Proof. It will be harmless to assume that V = {1, . . . , v} and B = {1, . . . , b}.
For p = 1, . . . , v we let rp be the p’th row of the incidence matrix, so rp ∈ Rb with

(rp)j =

{
1 if j ∈ Rp

0 if j ̸∈ Rp.

We also put e = (1, 1, . . . , 1) ∈ Rb. We claim that

rp · e = r rp · rq =

{
r if p = q

λ if p ̸= q
rp · (rrq − λe) =

{
r(r − λ) if p = q

0 if p ̸= q.

Indeed, as e = (1, 1, . . . , 1), the dot product rp · e is just the sum of the entries in rp, which is |Rp| = r.
Similarly, the j’th term in rp · rp is 12 = 1 if j ∈ Rp and 02 = 0 if j ̸∈ Rp, so rp · rp = |Rp| = r again. On the
other hand, if q ̸= p then the j’th term in rp ·rq is 1 if j ∈ Rp∩Rq and zero otherwise, so rp ·rq = |Rp∩Rq| = λ.
If we multiply this relation by r and multiply the relation rp ·e = r by λ and subtract, we get rp ·(rrq−λe) = 0
in the case q ̸= p. A similar argument gives rp · (rrp − λe) = r2 − λr = r(r − λ), as claimed. Note also that
Proposition 15.4 gives r > λ > 0, so r(r − λ) ̸= 0.

We next claim that the vectors r1, . . . , rv ∈ Rb are linearly independent. Indeed, suppose we have a linear
relation

v∑
p=1

αprp = α1r1 + · · ·+ αvrv = 0.

For any q, we can take the dot product with the vector rrq −λe, giving
∑v

p=1 αprp · (rrq −λe) = 0. The dot
product relations proved above show that all the terms on the left are zero apart from the term where p = q;
we therefore get αq r(r−λ) = 0. As r(r−λ) ̸= 0 this gives αq = 0. This works for all q, so α1 = · · · = αv = 0.
This proves linear independence.

It is a basic fact of linear algebra that the maximum possible length of a linearly independent list in Rb

is the dimension b. Thus, we must have v ≤ b. □

Note that the conclusion b ≥ v is a purely combinatorial fact, so it is interesting that we have had to
make a detour into linear algebra to prove it.

Definition 15.6. A symmetric design is one in which b = v.

Remark 15.7. Proposition 15.5 tells us that in some sense symmetric designs are maximally efficient (but
they are quite hard to produce). Recall from Proposition 15.4 that bk = rv. From this we see that a
symmetric design also satisfies k = r. Example 15.3 has v = 9 and b = 12 so it is not symmetric.

We next discuss an interesting construction that uses some number theory to produce a symmetric block
design.

Video (Definition 15.8 to Lemma 15.14)
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Definition 15.8. Let p be a prime number of the form p = 4n+ 3, so

Z/p = {0,±1,±2, . . . ,±(2n+ 1)}.
We put

Q = {i ∈ Z/p | i = j2 for some j ∈ Z/p with j ̸= 0},
and call this the set of quadratic residues. We then have a matching problem with B = V = Z/p and
Cj = j +Q.

Remark 15.9. We have m ∈ Cj iff m ∈ j +Q iff m− j ∈ Q iff j ∈ m−Q, so Rm = m−Q.

Example 15.10. Take p = 7, so p = 4n+3 with n = 1 and Z/p = {0,±1,±2,±3}. We have (±1)2 = 1 and
(±2)2 = 4 = −3 (mod 7) and (±3)2 = 9 = 2 (mod 7), so Q = {1, 2,−3}. This gives

C0 = {1, 2,−3} R0 = {−1,−2, 3}
C1 = {2, 3,−2} R1 = {0,−1,−3}
C2 = {3,−3,−1} R2 = {1, 0,−2}
C3 = {−3,−2, 0} R3 = {2, 1,−1}

C−1 = {0, 1, 3} R−1 = {−2,−3, 2}
C−2 = {−1, 0, 2} R−2 = {−3, 3, 1}
C−3 = {−2,−1, 1} R−3 = {3, 2, 0}.

One can check that |Rl ∩Rm| = 1 whenever l ̸= m, so this is a (7, 7, 3, 3, 1)-block design.

Interactive demo

Example 15.11. Take p = 11, so p = 4n + 3 with n = 2 and Z/p = {0,±1,±2,±3,±4,±5}. We have
(±1)2 = 1 and (±2)2 = 4 and (±3)2 = 9 = −2 (mod 11) and (±4)2 = 16 = 5 (mod 11) and (±5)2 = 25 = 3
(mod 11), so

Q = {1,−2, 3, 4, 5}.
I particular, we have |Q| = 5 and so |Cj | = 5 for all j and |Rm| = 5 for all m. We also have

R0 ∩R1 = (−Q) ∩ (1−Q) = {−1, 2,−3,−4,−5} ∩ {0, 3,−2,−3,−4} = {−3,−4},
so |R0 ∩R1| = 2. In fact we have |Rl ∩Rm| = 2 for all l ̸= m, so we have a (11, 11, 5, 5, 2)-block design. This
will follow from Theorem 15.16, which we will prove below.

Recall from Proposition 14.35 that the set (Z/p) \ {0} is a group under multiplication, with order p− 1 =
4n+ 2.

Lemma 15.12. The set Q is a subgroup of (Z/p) \ {0} and has |Q| = 2n + 1. Moreover, for each i ∈
{1, . . . , 2n+ 1}, precisely one of i and −i is in Q.

This last claim is clearly visible in the cases p = 7 (where Q = {1, 2,−3}) and p = 11 (where Q =
{1,−2, 3, 4, 5}).

Proof. Put U = (Z/p) \ {0} for brevity. We can define a homomorphism α : U → U by α(u) = u2, and then
Q is the image of α (which is one way to see that it is a subgroup). The First Isomorphism Theorem shows
that Q ≃ U/ ker(α) and so |Q| = |U |/| ker(α)|. Here

ker(α) = {u ∈ U | u2 = 1} = {u ∈ U | (u− 1)(u+ 1) = 0}.
As Z/p is a field, the product of two terms can only be zero if one of the terms is zero, so the equation
(u− 1)(u+ 1) = 0 can only hold if u = ±1. This shows that ker(α) = {1,−1}, so |Q| = |U |/2 = 2n+ 1. We
next claim that −1 ̸∈ Q. Indeed, if we have −1 = u2 then u would be an element of order 4 in U , but that
is impossible (by Lagrange’s Theorem) because the order |U | = 2n+ 2 is not divisible by 4. Next, if −i and
i were both in Q then the element −1 = −i.i−1 would also be in Q, which is false. Thus, each of the sets
{1,−1}, {2,−2}, . . . , {2n + 1,−(2n + 1)} contains at most one element of Q. As |Q| = 2n + 1, we see that
each of these sets must contain precisely one element of Q. □
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From Lemma 15.12 it is clear that |Cj | = |j + Q| = |Q| = 2n + 1 for all j, and that |Rm| = |m − Q| =
|Q| = 2n+ 1 for all m. However, it is not yet clear what we can say about |Rl ∩Rm| when l ̸= m. For this
we need some more definitions.

Definition 15.13. We put D = {(u, v) ∈ Q×Q | u ̸= v}, so |D| = |Q|(|Q| − 1). As |Q| = 2n+1, this gives
|D| = (4n+2)n. Also, for x ∈ Z/p with x ̸= 0 we put Dx = {(u, v) ∈ D | u− v = x}. We note that D is the
disjoint union of the subsets Dx, so |D| =

∑
x |Dx|.

Lemma 15.14. |Dx| = n for all x.

Proof. Recall from Lemma 15.12 that either x or −x is a square. Suppose for the moment that x is a square.
Suppose that (u, v) ∈ D1, so u and v are squares with u− v = 1. It is clear that the product of two squares
is a square, so ux and vx are squares with ux− vx = x, so (ux, vx) ∈ Dx. Conversely, if (u′, v′) ∈ Dx then
(u′/x, v′/x) ∈ D1. From this it is clear that |Dx| = |D1|.

Now suppose instead that −x is a square. If (u, v) ∈ D1 then −vx and −ux are squares with (−vx) −
(−ux) = (u − v)x = x, so (−vx,−ux) ∈ Dx. Conversely, if (u′, v′) ∈ Dx then (−v′/x,−u′/x) ∈ D1. From
this it is again clear that |Dx| = |D1|.

We now see that |Dx| = |D1| in all cases, and the number of possibilities for x is p − 1 = 4n + 2. The
equation |D| =

∑
x |Dx| now becomes |D| = (4n+2)|D1|. However, we saw previously that |D| = (4n+2)n,

so |D1| = n, so |Dx| = n for all x. □

Example 15.15. We will show how the above lemma works out in the case where p = 11 and so n = 2 and
Q = {1,−2, 3, 4, 5}. The table below shows the differences u− v for u, v ∈ Q with u ̸= v.

u
v

1 −2 3 4 5

1 3 −2 −3 −4

−2 −3 −5 5 4

3 2 5 −1 −2

4 3 −5 1 −1

5 4 −4 2 1

We can read off the sets Dx from this. For example, to find D5 we look in the table and see that 5 appears
in the position where u = −2 and v = 4, and also in the position where u = 3 and v = −2. We therefore
have D5 = {(−2, 4), (3,−2)}. The complete list of sets Dx is as follows:

D1 = {(4, 3), (5, 4)} D−1 = {(3, 4), (4, 5)}
D2 = {(3, 1), (5, 3)} D−2 = {(1, 3), (3, 5)}
D3 = {(1,−2), (4, 1)} D−3 = {(−2, 1), (1, 4)}
D4 = {(−2, 5), (5, 1)} D−4 = {(5,−2), (1, 5)}
D5 = {(−2, 4), (3,−2)} D−5 = {(4,−2), (−2, 3)}

We find that |Dx| = 2 = n in every case, as predicted by the lemma.

Theorem 15.16. The matching problem in Definition 15.8 is a (4n+3, 4n+3, 2n+1, 2n+1, n)-block design.

Proof.
Video

All that is left is to show that |Rl ∩Rm| = n for all l ̸= m. Recall that Rl = l−Q, so j ∈ Rl iff l− j ∈ Q.
Thus, if j ∈ Rl∩Rm we see that l−j,m−j ∈ Q and of course (l−j)−(m−j) = l−m so (l−j,m−j) ∈ Dl−m.
We can therefore define a map f : Rl ∩ Rm → Dl−m by f(j) = (l − j,m − j). In the opposite direction,
suppose that (u, v) ∈ Dl−m, so u, v ∈ Q with u − v = l − m or equivalently l − u = m − v. If we put
j = l − u = m − v then we find that j ∈ Rl (because Rl = l −Q and j = l − u) and also j ∈ Rm (because
Rm = m−Q and j = m− v), so j ∈ Rl ∩Rm. Using this we see that f is a bijection, so |Rl ∩Rm| = |Dl−m|.
We also know from Lemma 15.14 that |Dl−m| = n, so |Rl ∩Rm| = n as required. □
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