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1) Introduction
Computational modelling and analysis of biological
network motifs are essential for understanding of bi-
ological systems. Genetic oscillators, which can be
modelled by ordinary differential equations (ODEs),
are an important motif in gene regulation and ob-
served in many biological systems. Here, we investi-
gate the influence of fitness setup on the synthesis of
a genetic oscillator. The production of oscillations is
important in biological systems [1, 2] and the ability
to accurately tune the period of a genetic oscillator
is vital in biological modelling.

Biological Event Time Scale REF
cardiac rhythms seconds [3]
mitosis cell cycles minutes [4]
sleep/wake cycle hours [5]
circadian rhythm days [6]
ovarian cycle weeks [3]

predator-prey populations years [7]

2) Gene Regulatory Networks
GRNs are groups of genes that interact with each
other via their protein production.
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The following GRN is able to produce a sustained
oscillation,

x2 x3x1

and is modelled using the following ODEs;

ẋ1 = a12H
a
12(x2)− a11x1 (1)

ẋ2 = a23
1

2

(
Ha

21(x1) +Ha
23(x3)

)
− a22x2 (2)

ẋ3 = a32H
r
32(x2)− a33x3 (3)

The interaction between two genes is modelled using
Hill functions and combined using summation logic;

Ha
ij(xj) =

βxnj
θni + xnj

; Hr
ij(xj) =

β

1 + (xj/θi)n
(4)

3) Evolutionary Algorithms
Here we use NSGA-II [9] with Simulated Binary
Crossover and Polynomial Mutation operations [10]
to optimise the system parameters.
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4) Single Objective Setup
Time Domain
A self sustained oscillation is producible by reducing
the error between the GRN dynamics and a desired
state described by a sine wave.

xdtg(t) = sin

(
2πt

T

)
(5)

We define a fitness function as the mean squared
error (MSE) between the GRN and the desired state

f(ts) =
1

R

R∑
r=1

N∑
t=0

(
xitg(r, t)− xdtg(t)

)2
(6)

Frequency Domain
We also investigate a frequency based desired state
by calculating the maximum value of the Fourier
Transform [8] of the desired sine wave.

ωd
tg =MAX

{
F̂

[
sin

(
2πt

T

)]}
(7)

We define a similar MSE fitness function to the
time domain between the desired state, ωd

tg, and the
Fourier Transform of the state of the GRN, xitg(r, t).

f(ωs) =
1

R

R∑
r=1

N∑
t=0

(
F̂
[
xitg(r, t)

]
− ωd

tg

)2
(8)

5) Multi-objective Setup
Specified Frequency
Here we use a mutli-objective setup with the time
and frequency domain objectives

(
Eq. (6) and

Eq. (8)
)
from the single objective setups together.

Unspecified Frequency
We use the time domain objective

(
Eq. (6)

)
with

a frequency domain objective that does not specify
the oscillator characteristics.

f(ωu) =
1

R

R∑
r=1

1

MAX {ĝ (r, ω)}

∫
ĝ (r, ω) dω (9)

ĝ (r, ω) = F̂
[
xitg (r, t)

]
(FT of GRN). (10)

6) Results, Conclusions and Future Work
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MO(ts, ωu)

MO(ts, ωs)

SO(ts)MO(ts, ωu) MO(ts, ωs) SO(ωs)
1)HF 2)OD 3)OD

31/50 0/5022/50 24/50

Conclusions

• MOV may depend on f( ) setup and domain

• Additional f(ω) do not aid tunabillity overall

• NSGA-II + f(ω) unable to produce oscillations

Future Work
• Further investigation into f(ω)

• Compare NSGA-II to evolution strategy

• Auto regulation loops to aid tunabillity [11]
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