Single and Multi-Objective in Silico Evolution of Tunable Genetic Oscillators

Spencer A. Thomas and Yaochu Jin, Department of Computing, University of Surrey, UK, {s.thomas, yaochu.jin}@surrey.ac.uk

1) Introduction

Computational modelling and analysis of biological network motifs are essential for understanding of biological systems. Genetic oscillators, which can be modelled by ordinary differential equations (ODEs), are an important motif in gene regulation and observed in many biological systems. Here, we investigate the influence of fitness setup on the synthesis of a genetic oscillator. The production of oscillations is important in biological systems [1, 2] and the ability to accurately tune the period of a genetic oscillator is vital in biological modelling.

Biological Event	Time Scale	REF
cardiac rhythms	seconds	[3]
mitosis cell cycles	minutes	[4]
sleep/wake cycle	hours	[5]
circadian rhythm	days	[6]
ovarian cycle	weeks	[3]
predator-prey populations	years	[7]

5) Multi-objective Setup

Specified Frequency

Here we use a mutli-objective setup with the time and frequency domain objectives (Eq. (6) and Eq. (8) from the single objective setups together.

Unspecified Frequency

We use the time domain objective (Eq. (6)) with a frequency domain objective that does not specify the oscillator characteristics.

$$f(\omega_u) = \frac{1}{R} \sum_{r=1}^{R} \frac{1}{MAX \{\hat{g}(r,\omega)\}} \int \hat{g}(r,\omega) \, d\omega \quad (9)$$

$$\hat{g}(r,\omega) = \hat{F}\left[x_{tg}^{i}(r,t)\right] \quad (\text{FT of GRN}).$$
(10)

Acknowledgements

This work is funded by an EPSRC doctoral training centre (DTC) studentship at the University of Surrey.

Desired Oscillator Period

20

Future Work

- Further investigation into $f(\omega)$
- Compare NSGA-II to evolution strategy
- Auto regulation loops to aid tunability [11]

4) Single Objective Setup

Time Domain A self sustained oscillation is producible by reducing the error between the GRN dynamics and a desired state described by a sine wave.

$$f(t_s)$$

Frequency Domain We also investigate a frequency based desired state by calculating the maximum value of the Fourier Transform [8] of the desired sine wave.

$$\omega_{tg}^{d} = MAX \left\{ \hat{F} \left[\sin \left(\frac{2\pi t}{T} \right) \right] \right\}$$
(7)

$$f(\omega_s) = \frac{1}{R} \sum_{r=1}^{R} \sum_{t=0}^{N} \left(\hat{F} \left[x_{tg}^i(r,t) \right] - \omega_{tg}^d \right)^2$$
(8)

R	ef	fe	er	'E
[1]	Ya	ao	ch	u

- Jin and Bernhard Sendhoff, Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on, pp. 386 -391, 2008
- Rhythms, Cambridge University Press, vol. 1, 1997
- [3] A. Goldbeter, Biochemical Oscillations and Cellular [4] M. R. Francis and E. J. Fertig, PLoS ONE, 1:7, 2012
- [5] M. J. Rempe, J. Best and D. Terman, Journal of Mathematical Biology, 5:60, pp 615-644, 2010
- [6] T. R. Chay, Proceedings of the National Academy of Sciences of the United States of America, 4:78, pp 2204-2207, 1981
- [7] R. H. Ennes and George C. McGuire, Nonlinear Physics with Mathematica for Scientists and Engineers, Birkhäuser Boston, 2001
- [8] M. Frigo and S. G. Johnson, Proceedings of the IEEE, 2:93, pp 216-231, 2005 [9] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, Evo
 - lutionary Computation, IEEE Transactions on, 2:6, pp 182-197, 2002

$$x_{tg}^d(t) = \sin\left(\frac{2\pi t}{T}\right) \tag{5}$$

We define a fitness function as the mean squared error (MSE) between the GRN and the desired state

$$= \frac{1}{R} \sum_{r=1}^{R} \sum_{t=0}^{N} \left(x_{tg}^{i}(r,t) - x_{tg}^{d}(t) \right)^{2}$$
(6)

We define a similar MSE fitness function to the time domain between the desired state, ω_{tq}^d , and the Fourier Transform of the state of the GRN, $x_{tq}^i(r,t)$.

ences

[2] D. Gonze, Biosystems, 1:99, pp 60-69, 2010

- [10] K. Deb and R. B. Agrawal, Complex Systems, 9, pp 115-148, 1995
- [11] T. Y.-C. Tsai *et al.*, Science, 5885:321, pp 126-129, 2008