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Reinforcement Learning

• Origin in psychology

• Learning from interaction

• Senses and acts upon its environment

• Chosen action influences the state of the 
environment, which determines the reward

a(t)

s(t+1)

r(t+1)

Environment



Reinforcement Learning
• Environment?

‣ Markov Decision Process (MDP) contains:

1. A set of possible states S

2. A set of possible actions A

3. A real-valued reward function R(s,a)

4. A transition function T : S x A       Prob(S) 

• Goal?

• Maximize long-term reward (R)

• Learn policy

• Determine (optimal) action to take in each state

Reinforcement learning

 RL leert op basis van ervaring (trial and error)  
supervised learning

 Sequentieel beslissingsprobleem 

 
Online leren exploratie vs. exploitatie

 Theoretische achtergrond: DP & Stochastische approximatie
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• How?

• Q-values store estimated quality of state-action pair, i.e. 
Q(s,a)

• Update rule adapts Q-values into the direction of the 
discounted future reward

Reinforcement Learning



Single-objective Q-learning
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Algorithm 1 Scalarized ✏-greedy action selection, scal-✏-greedy()

1: SQList {}
2: for each action ai 2 A do
3: ~o {Q(s, ai, o1), . . . , Q(s, ai, om)}
4: SQ(s, a) scalarize(~o) . Scalarize Q-values
5: Append SQ(s, a) to SQList

6: end for
7: return ✏-greedy(SQList)

Algorithm 2 ✏-greedy action selection, ✏-greedy()

1: r  rnd

2: if r > ✏ then return argmaxaQ(s, a)
3: else return randomaQ(s, a)
4: end if

In Algorithm 2, we present the scalarized action selection strategy for MO
Q-learning. At line 4, the scalarize function can be instantiated by any scalar-
ization function to obtain a single indication for the quality of the combination of
state s and action a, SQ(s, a) over the Q-values for each objective. Furthermore,
the standard ✏-greedy strategy from RL can be applied after we transform the
multi-objective problem to a single-objective problem and decide the appropriate
action, based on these individual indications in SQList. The new multi-objective
Q-learning algorithm is presented in Algorithm 3. At line 1, the Q-values for each
triple of states, actions and objectives are initialized. Each episode, the agent
starts in state s (line 3) and chooses an action based on the multi-objective
action selection strategy of Algorithm 2 at line 5. Upon taking action a, the
agent is being transitioned into the new state s

0 and the environment provides
it with the vector of rewards ~r 2 ~R. At line 10, the Q(s, a, o) are updated with
a multi-objective version of Eq. 1. This process is repeated until the Q-values
converge.

4 Hypervolume-based Multi-Objective RL

In this section, we present our novel hypervolume-based MORL algorithm (HB-
MORL) that combines the hypervolume unary indicator as a novel action se-
lection mechanism. This action selection mechanism is similar to the selection
strategy utilized for the MO Q-learning algorithm (Algorithm 2).

The proposed strategy is presented in Algorithm 4, while the entire HB-
MORL algorithm is presented in Algorithm 5. The outline of the HB-MORL
algorithm is similar to the MO Q-learning algorithm in Algorithm 3, but has an
additional parameter, l. Each episode, the agent maintains a list l of Q-values of
already visited states and actions. Initially, this list is empty (Algorithm 5, line
3).

take current best

take random



a(t)

s(t+1)

r0(t+1)

Environment

...
rm(t+1)

• Multi-objective reinforcement learning (MORL)

‣ MOMDP

‣ Vector of rewards

‣ Vector of Q-values

• Goal:

Single-objective Multi-objective

Multiple objectives

Q-Values in Space!

V (s0)

Q(s0, a0)

Each policy gives
one value

Leon Barrett & Srini Narayanan



State of the art MORL
• Scalarization approaches

1. Linear scalarization MORL

‣ Weighted-sum [Vamplew, 2011]

2. Non-linear scalarization MORL

‣ Chebyshev function [Van Moffaert, 2013]

Problems are similar to problems in MO

➡ Defining weights a-priori

➡ Performance heavily depends on weights used

➡ Not all solutions in Pareto front discovered

Alternative solution?

Indicator-based search!



• A unary quality indicator I assigns a real number to a 
Pareto set approx.

• Measures the hypervolume between r and s1, s2 and s3

• Used in EMO algorithms:

• MO-CMA-ES, HypE, SMS-EMOA, ...
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Hypervolume-based MORL
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Algorithm 4 Hypervolume-based Q-learning algorithm

1: Initialize Q(s, a, o) arbitrarily
2: for each episode T do
3: Initialize s, l = {}
4: repeat
5: Choose a from s using policy derived from Q (e.g. ✏-greedy HBAS(s, l))

6: Take action a and observe state s

0 2 S, reward vector ~r 2 ~R
7: ~o {Q(s, a, o1), . . . , Q(s, a, om)}
8: Add ~o to l . Add Q-values of selected action a to l

9: maxa0  greedy HBAS(s0, l) . Get greedy action in s

0 based on new l

10:
11: for each objective o do . Update Q-values for each objective
12: Q(s, a, o) Q(s, a, o) + ↵[~r(s, a, o) + �Q(s0,maxa0

, o)�Q(s, a, o)]
13: end for
14:
15: s s

0
. Proceed to next state

16: until s is terminal
17: end for

still make her/his decision on which policies or trade-o↵s are preferred, but the
advantage is that emphasis on particular objectives is not required beforehand.

5 Results

In this section, we experimentally evaluate the performance of the HB-MORL al-
gorithm on two benchmark environments for di↵erent quality measures. These re-
sults are then compared to two instances of MORL algorithms that use scalarization-
based action selection strategies, i.e. the linear and the Chebyshev Q-learning
algorithm.

5.1 Testing environments

Recently, [12] proposed empirical evaluation techniques for multi-objective re-
inforcement learning, together with a few benchmark environments. We build
further on this work and perform our experiments on the same worlds, such as
the Deep Sea Treasure and the Multi-Objective Mountain Car environments to
compare the two scalarization functions and the HB-MORL algorithm in detail.
The optimal Pareto sets of each world were provided by the same researchers.

5.2 Parameter setting

In the experiments, presented below, we relied on identical configurations for
each of the testing environments. We applied an ✏-greedy exploration strategy
with ✏ set to 0.1 and the Q-values were initialized randomly for each objective.

list of previously visited Q-vectors
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gorithm on two benchmark environments for di↵erent quality measures. These re-
sults are then compared to two instances of MORL algorithms that use scalarization-
based action selection strategies, i.e. the linear and the Chebyshev Q-learning
algorithm.

5.1 Testing environments

Recently, [12] proposed empirical evaluation techniques for multi-objective re-
inforcement learning, together with a few benchmark environments. We build
further on this work and perform our experiments on the same worlds, such as
the Deep Sea Treasure and the Multi-Objective Mountain Car environments to
compare the two scalarization functions and the HB-MORL algorithm in detail.
The optimal Pareto sets of each world were provided by the same researchers.

5.2 Parameter setting

In the experiments, presented below, we relied on identical configurations for
each of the testing environments. We applied an ✏-greedy exploration strategy
with ✏ set to 0.1 and the Q-values were initialized randomly for each objective.

6 Hypervolume-based Multi-Objective Reinforcement Learning

Algorithm 3 Greedy Hypervolume-based Action Selection, HBAS(s, l)

1: volumes {} . The list collects hv contributions for each action
2: for each action ai 2 A of state s do
3: ~o {Q(s, ai, o1), . . . , Q(s, ai, om)}
4: hv  calculate hv(l + ~o) . Compute hv contribution of ai to l

5: Append hv to volumes

6: end for
7: return argmaxa volumes . Retrieve the action with the maximal contribution

4 Hypervolume-based Multi-Objective RL

In this section, we present our novel hypervolume-based MORL algorithm (HB-
MORL) that combines the hypervolume unary indicator as a novel action se-
lection mechanism. This action selection mechanism is similar to the selection
strategy utilized for the MO Q-learning algorithm (Algorithm 1).

The proposed strategy is presented in Algorithm 3, while the entire HB-
MORL algorithm is presented in Algorithm 4. The outline of the HB-MORL
algorithm is similar to the MO Q-learning algorithm in Algorithm 2, but has an
additional parameter, l. Each episode, the agent maintains a list l of Q-values of
already visited states and actions. Initially, this list is empty (Algorithm 4, line
3).

In the action selection strategy, the agent consults this list (Algorithm 3)
by employing the hypervolume metric. For each action ai of state s, the vector
of Q-values is retrieved from the table at line 3, whereafter the contribution
of each action to the list of visited state-action pairs is calculated (line 4) and
stored in the volumes list. In the greedy selection case, the action with the
largest contribution is retrieved from volumes and selected (line 7), while in the
✏-greedy case a random action is selected with a probability of ✏ (not shown in
Algorithm 3). Subsequently, the Q-values of the selected action are appended to
the list l (line 8, Algorithm 4) and the learning proceeds.

Di↵erences between MORL algorithms. The HB-MORL algorithm,
presented in this paper, resembles in quite a few places to the scalarization frame-
work, presented in Algorithm 2. They are both based on Watkins’ Q-learning
algorithm and its update rule. This o↵ers the advantage that we can rely on
the same convergence proof and no exotic or problem-specific algorithm is pro-
posed. On the contrary, their correspondence allows the same generality that
Q-learning has been o↵ering for decades. As presented, the main di↵erence to
the scalarization framework lies in the action selection strategy. The scalariza-
tion framework transforms the vector of Q-values into a single indicator, whereas
the hypervolume-based algorithm performs searches directly into the objective
space. Furthermore, HB-MORL does not rely on weights, defined a priori to
guide the search process, as opposed to the scalarized algorithms. When the
policies obtained by di↵erent runs of the algorithm are collected, the user can

Perform action selection based on current state and l 

Hypervolume-based MORL
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Perform action selection based on current state and l 

Hypervolume-based MORL

Return action a with maximal contribution in 
HV taking into account the contents of l



Add current Q-vector to l

Update Q-value for each 
objective individually
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inforcement learning, together with a few benchmark environments. We build
further on this work and perform our experiments on the same worlds, such as
the Deep Sea Treasure and the Multi-Objective Mountain Car environments to
compare the two scalarization functions and the HB-MORL algorithm in detail.
The optimal Pareto sets of each world were provided by the same researchers.
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lection mechanism. This action selection mechanism is similar to the selection
strategy utilized for the MO Q-learning algorithm (Algorithm 1).

The proposed strategy is presented in Algorithm 3, while the entire HB-
MORL algorithm is presented in Algorithm 4. The outline of the HB-MORL
algorithm is similar to the MO Q-learning algorithm in Algorithm 2, but has an
additional parameter, l. Each episode, the agent maintains a list l of Q-values of
already visited states and actions. Initially, this list is empty (Algorithm 4, line
3).

In the action selection strategy, the agent consults this list (Algorithm 3)
by employing the hypervolume metric. For each action ai of state s, the vector
of Q-values is retrieved from the table at line 3, whereafter the contribution
of each action to the list of visited state-action pairs is calculated (line 4) and
stored in the volumes list. In the greedy selection case, the action with the
largest contribution is retrieved from volumes and selected (line 7), while in the
✏-greedy case a random action is selected with a probability of ✏ (not shown in
Algorithm 3). Subsequently, the Q-values of the selected action are appended to
the list l (line 8, Algorithm 4) and the learning proceeds.

Di↵erences between MORL algorithms. The HB-MORL algorithm,
presented in this paper, resembles in quite a few places to the scalarization frame-
work, presented in Algorithm 2. They are both based on Watkins’ Q-learning
algorithm and its update rule. This o↵ers the advantage that we can rely on
the same convergence proof and no exotic or problem-specific algorithm is pro-
posed. On the contrary, their correspondence allows the same generality that
Q-learning has been o↵ering for decades. As presented, the main di↵erence to
the scalarization framework lies in the action selection strategy. The scalariza-
tion framework transforms the vector of Q-values into a single indicator, whereas
the hypervolume-based algorithm performs searches directly into the objective
space. Furthermore, HB-MORL does not rely on weights, defined a priori to
guide the search process, as opposed to the scalarized algorithms. When the
policies obtained by di↵erent runs of the algorithm are collected, the user can

Hypervolume-based MORL



Benchmark 1
• Benchmark instances [Vamplew, 2011]

Deep Sea Treasure world

‣ Minimize time and maximize treasure value

‣ Transformed into full maximization problem 

‣ Time objective x -1

‣ 10 Pareto optimal policies

‣ Represent non-convex Pareto front
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(b) MO Mountain Car world

Fig. 1: Learning curves on the Deep Sea Treasure and the MO Mountain Car worlds,
respectively

to the linear case. Out of the 10 possible goals, it found 8 on a regular basis,
with increasing probability near the extreme solutions. Without being initialized
with any prior preferences, the hypervolume-based MORL performed acceptable
and focused on 5 solutions.

5.4 Quality indicator comparison

In multi-objective research, quality indicator studies are a popular approach
for conducting algorithm comparisons. The performance indicators applied in
this experimental study are the (inverted) generational distance , the general-
ized spread indicator, the cardinality and the hypervolume distance. The former
three are minimization metrics, while the latter two are to be maximized. In
detail, the generational distance and the inverted generational distance were
both proposed by [14]. The former measures how far the elements in the set
of non-dominated vectors, generated by a learning algorithm, are from those in
the Pareto optimal set. The latter calculates how far each element of the Pareto
optimal set is from the non-dominated vectors in the approximation set. The
spread indicator [1] on the other hand is a diversity metric that measures the
extent of spread achieved among the obtained solutions. The cardinality measure
simply counts the number of elements found in the Pareto set.

The results are presented in Table 4. On the Mountain Car (MC) world, the
HB-MORL obtained overall the best results out of the three algorithms, except
for the fact that the Chebyshev method found one extra solution. The linear
scalarized algorithm obtained the best value for the generalized spread, but as
this metric only uses the members on the boundaries of the Pareto optimal set
(i.e. the extreme solutions) in its calculations, this metric is biased towards the
linear method that exclusively finds these solutions (see Fig. 2(c)).

On the Deep Sea (DS) world, the Chebyshev method found 8 out of 10
distinct results and obtained the best value for the inverted generational dis-
tance. Closely followed by HB-MORL that without any prior information (i.e.



Pareto optimal policies learned

Hypervolume-based Multi-Objective Reinforcement Learning 11

0 1 2 3 4 50

200

400

600

800

1000

1200

Run x 100

H
yp

er
vo

lu
m

e

 

 

(a) Deep Sea Treasure world

0 1 2 3 4 5

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 107

Run x 100

H
yp

er
vo

lu
m

e

 

 

Pareto front
Linear scal. Q−learning
Chebyshev Q−learning
Hypervolume Q−learning

(b) MO Mountain Car world
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(c) Frequency of goals in the Deep Sea world

Fig. 2: Fig. 2(a) and 2(b) depict the performance of each learning algorithm each 100
runs. In Fig. 2(c), the frequency probabilities of each of the 10 Pareto dominating
goals in the Deep Sea Treasure world are presented. The Chebyshev-based algorithm
obtained the best spread, closely being followed by HB-MORL. The linear scalarized
algorithm only found two (extreme) solutions.

no weights) obtained 5 distinct results, but a larger hypervolume was obtained.
This means that HB-MORL was much more consistent in finding good solutions
frequently (i.e. the increased hypervolume), but its results were not as spread
around in the search space as the Chebyshev-based algorithm (i.e. the cardi-
nality). The linear scalarized algorithm only obtained 2 (extreme) results that
are located at the largest possible distance from each other, resulting in the best
generalized spread value. Each of the results found by any of the algorithms were
an element of the optimal Pareto set, meaning that the generational distance is
0.

To conclude, on each environments, HB-MORL outperformed the linear scalar-
ization algorithm and obtained the best results on the most important quality
indicator, i.e. the hypervolume metric. On the other indicators in the Deep Sea
Treasure world, the HB-MORL algorithm obtained good results but was not
always the best performing algorithm. We can conclude that the HB-MORL al-

As expected, the linear scalarization learner was 
ineffective in the non-convex environment
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frequently (i.e. the increased hypervolume), but its results were not as spread
around in the search space as the Chebyshev-based algorithm (i.e. the cardi-
nality). The linear scalarized algorithm only obtained 2 (extreme) results that
are located at the largest possible distance from each other, resulting in the best
generalized spread value. Each of the results found by any of the algorithms were
an element of the optimal Pareto set, meaning that the generational distance is
0.

To conclude, on each environments, HB-MORL outperformed the linear scalar-
ization algorithm and obtained the best results on the most important quality
indicator, i.e. the hypervolume metric. On the other indicators in the Deep Sea
Treasure world, the HB-MORL algorithm obtained good results but was not
always the best performing algorithm. We can conclude that the HB-MORL al-

The Chebyshev learner obtained the best spread, 
but not all the time (cfr. learning graph)
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(c) Frequency of goals in the Deep Sea world

Fig. 2: Fig. 2(a) and 2(b) depict the performance of each learning algorithm each 100
runs. In Fig. 2(c), the frequency probabilities of each of the 10 Pareto dominating
goals in the Deep Sea Treasure world are presented. The Chebyshev-based algorithm
obtained the best spread, closely being followed by HB-MORL. The linear scalarized
algorithm only found two (extreme) solutions.

no weights) obtained 5 distinct results, but a larger hypervolume was obtained.
This means that HB-MORL was much more consistent in finding good solutions
frequently (i.e. the increased hypervolume), but its results were not as spread
around in the search space as the Chebyshev-based algorithm (i.e. the cardi-
nality). The linear scalarized algorithm only obtained 2 (extreme) results that
are located at the largest possible distance from each other, resulting in the best
generalized spread value. Each of the results found by any of the algorithms were
an element of the optimal Pareto set, meaning that the generational distance is
0.

To conclude, on each environments, HB-MORL outperformed the linear scalar-
ization algorithm and obtained the best results on the most important quality
indicator, i.e. the hypervolume metric. On the other indicators in the Deep Sea
Treasure world, the HB-MORL algorithm obtained good results but was not
always the best performing algorithm. We can conclude that the HB-MORL al-

HB-MORL focusses on policies that maximize 
the hypervolume, given a particular reference point



Benchmark 2
MO Mountain Car world

‣ 3-objective

‣ minimize time, number of reversal                                                     
and acceleration actions

‣ Transformed into maximization problem

‣ 470 elements in Pareto front

Pareto front
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Fig. 1: Learning curves on the Deep Sea Treasure and the MO Mountain Car worlds,
respectively

to the linear case. Out of the 10 possible goals, it found 8 on a regular basis,
with increasing probability near the extreme solutions. Without being initialized
with any prior preferences, the hypervolume-based MORL performed acceptable
and focused on 5 solutions.

5.4 Quality indicator comparison

In multi-objective research, quality indicator studies are a popular approach
for conducting algorithm comparisons. The performance indicators applied in
this experimental study are the (inverted) generational distance , the general-
ized spread indicator, the cardinality and the hypervolume distance. The former
three are minimization metrics, while the latter two are to be maximized. In
detail, the generational distance and the inverted generational distance were
both proposed by [14]. The former measures how far the elements in the set
of non-dominated vectors, generated by a learning algorithm, are from those in
the Pareto optimal set. The latter calculates how far each element of the Pareto
optimal set is from the non-dominated vectors in the approximation set. The
spread indicator [1] on the other hand is a diversity metric that measures the
extent of spread achieved among the obtained solutions. The cardinality measure
simply counts the number of elements found in the Pareto set.

The results are presented in Table 4. On the Mountain Car (MC) world, the
HB-MORL obtained overall the best results out of the three algorithms, except
for the fact that the Chebyshev method found one extra solution. The linear
scalarized algorithm obtained the best value for the generalized spread, but as
this metric only uses the members on the boundaries of the Pareto optimal set
(i.e. the extreme solutions) in its calculations, this metric is biased towards the
linear method that exclusively finds these solutions (see Fig. 2(c)).

On the Deep Sea (DS) world, the Chebyshev method found 8 out of 10
distinct results and obtained the best value for the inverted generational dis-
tance. Closely followed by HB-MORL that without any prior information (i.e.
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to the linear case. Out of the 10 possible goals, it found 8 on a regular basis,
with increasing probability near the extreme solutions. Without being initialized
with any prior preferences, the hypervolume-based MORL performed acceptable
and focused on 5 solutions.

5.4 Quality indicator comparison

In multi-objective research, quality indicator studies are a popular approach
for conducting algorithm comparisons. The performance indicators applied in
this experimental study are the (inverted) generational distance , the general-
ized spread indicator, the cardinality and the hypervolume distance. The former
three are minimization metrics, while the latter two are to be maximized. In
detail, the generational distance and the inverted generational distance were
both proposed by [14]. The former measures how far the elements in the set
of non-dominated vectors, generated by a learning algorithm, are from those in
the Pareto optimal set. The latter calculates how far each element of the Pareto
optimal set is from the non-dominated vectors in the approximation set. The
spread indicator [1] on the other hand is a diversity metric that measures the
extent of spread achieved among the obtained solutions. The cardinality measure
simply counts the number of elements found in the Pareto set.

The results are presented in Table 4. On the Mountain Car (MC) world, the
HB-MORL obtained overall the best results out of the three algorithms, except
for the fact that the Chebyshev method found one extra solution. The linear
scalarized algorithm obtained the best value for the generalized spread, but as
this metric only uses the members on the boundaries of the Pareto optimal set
(i.e. the extreme solutions) in its calculations, this metric is biased towards the
linear method that exclusively finds these solutions (see Fig. 2(c)).

On the Deep Sea (DS) world, the Chebyshev method found 8 out of 10
distinct results and obtained the best value for the inverted generational dis-
tance. Closely followed by HB-MORL that without any prior information (i.e.
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Table 4: Five quality indicator for each of the three algorithms on the two benchmark
instances. The first three are to be minimized, while the latter two are maximization
indicators. The best values are depicted in bold face.

Linear Chebyshev HB-MORL

Inverted Generational distance
DS 0.128 0.0342 0.0371
MC 0.012 0.010 0.005

Generalized spread
DS 3.14e�16 0.743 0.226
MC 0.683 0.808 0.701

Generational distance
DS 0 0 0
MC 0.0427 0.013824 0.013817

Hypervolume
DS 762 959.26 1040.2
MC 15727946 23028392 23984880

Cardinality
DS 2 8 5
MC 15 38 37

gorithm was very consisting in finding solutions that maximize the hypervolume
metric, but could be improved by more spread results.

Weights vs. quality indicator. In the following test, we investigate into
more detail the results of HB-MORL to the results obtained for each weighted
tuple for the scalarization-based algorithms (Table 5). It is important to note
that the HB-MORL algorithm is not set up with any information on how the ob-
jectives should be balanced or weighed. Therefore, in the table, its values remain
identical. Note that the generational distance was omitted because every result
obtained was an element of the Pareto set. We focus on the di↵erences between
the Chebyshev method and the HB-MORL algorithm and notice that there is
still a significant portion of the weighted tuples for which the Chebyshev algo-
rithm achieved better performance in term of the inverted generational distance
than was presumed in Table 4. Although, there are four cases (weights W6, W8,
W9 and W10) where the HB-MORL algorithm obtained improved performance
and 2 tuples (weights W3 and W4) that perform similarly.

The hypervolume measure indicated that for some weights, the Chebyshev
algorithm obtained a large portion of the Pareto set, but on the larger portion
of the experiments the results are less e�cient. Especially when assigning a very
low weight to the treasure objective (e.g. weight W10), a limited hypervolume
is achieved. In those cases, the time objective is being minimized with the re-
sult that treasures with a limited value, located near the starting position to
minimize the time and distance, are favored. The generalized spread indicator
showed that when focusing on the performance of particular tuples of weights,
the values become more clear and the HB-MORL algorithm is performing intrin-
sically better. Note that the Chebyshev algorithm found the two extreme points
in the objective space for weight W9, thus resulting in the best possible value
of 0. The same can be concluded for the cardinality indicator as for particular
weights, very few solution points are obtained.

To conclude, based on the empirical results, for a large portion of weights,
the Chebyshev MORL algorithm is considered a well-performing algorithm by
many quality indicator measures, such as spread and cardinality (see Table 4).
We have seen that for some weights (Table 5), the Chebyshev algorithm obtained



Conclusions
• We have combined EMO principles with RL to design a hybrid MORL 

algorithm

• HB-MORL uses the hypervolume measure to guide the action 
selection

• Results

• Linear scalarization learner is not generally applicable

• Chebyshev learns more spread results, but not robust all the time

• Scalarization methods and their performance depend on weight 
tuples used

➡ HB-MORL focuses on policies that maximize HV and finds them 
nearly always
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