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Abstract

This thesis explores the use of wavelet techniques to estimate the spectral prop-

erties of nonstationary time series and, in particular, the dependence between

pairs of nonstationary signals.

The first part of this thesis addresses the problem of estimating the depen-

dence between two regularly sampled time series. A new dependence measure

is proposed, derived from a bivariate locally stationary wavelet time series

model. Since wavelets are localised in both time and in scale, this approach

leads to a natural, local and multiscale estimate of nonstationary dependence.

The methodology is illustrated by application to an example from neuroscience.

Next we consider the use of wavelet lifting to compute the periodogram

of signals that are not observed at regular sampling intervals. This work is

motivated by application to palaeoclimate time series, which are intrinsically

unevenly sampled. The relationship between wavelet lifting scale and Fourier

frequency is investigated and the use of empirical mode decomposition is also

considered, providing an interesting comparison to the lifting methodology.

Finally, extension of the wavelet lifting methodology to provide measures

of coherence and phase between two irregularly sampled time series is consid-

ered. A lifting scheme that produces complex valued coefficients is proposed,

and this scheme is used to define the wavelet lifting cross-periodogram. The

methodology is demonstrated with respect to bivariate irregularly sampled

palaeoclimate series and compared to the methodology of the first two chap-

ters using a simulated example with regularly sampled observations.
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Chapter 1

Introduction

Time series arise from many diverse and different fields, from economics to

climatology. Time series analysis is therefore an important topic for many

different applications. For series that satisfy certain properties, such as sta-

tionarity and regular spacing of observations, there is much literature on well-

established analysis methods. This thesis is primarily concerned with analysis

methods for nonstationary time series with characteristics that deviate from

the standard assumptions. We consider the analysis of bivariate signals, and

time series that are observed with irregular sampling intervals. We are inter-

ested in describing the variation within the series and, in the case of bivariate

series, also the dependence between the series.

Wavelets can be thought of as localised, oscillatory basis functions with

several attractive properties for function representation. They are localised

in both time and frequency, providing sparse multiscale representations for

many signals. Due to their time localisation, wavelets provide natural ‘build-

ing blocks’ for nonstationary series. Classical wavelet methods also suffer from

some limitations; For example, they are restricted to cases where the data is

sampled at regular time intervals. Second generation wavelets provide a gen-

eralisation of classical wavelets, allowing for greater flexibility in applications.

Chapter 2 reviews the literature in the area of time series analysis using

wavelets. It summarises the basic concepts from wavelet theory, including

1



Chapter 1. Introduction

the discrete wavelet transform (DWT), and describes the locally stationary

wavelet (LSW) time series model of Nason et al. (2000). The LSW model

uses classical nondecimated wavelets as building blocks, and is therefore a

useful tool for modelling multiscale signals with time varying characteristics.

This model provides the foundations for our work in Chapters 3 and 4. The

lifting scheme is also introduced, providing a method of constructing second

generation wavelets and wavelet transforms, suitable for situations involving

departures from the assumptions of the DWT. The chapter includes a review

of the one coefficient at a time lifting scheme of Jansen et al. (2001). This

scheme is a key component of the irregular design methodology of Chapters 5

and 6.

Throughout this thesis our work is motivated by its usefulness in its appli-

cation to specific scientific issues. Chapter 4 considers the problem of estimat-

ing the dependence between observations in two functionally and anatomically

connected areas of a rat’s brain: the hippocampus and the prefrontal cortex.

The estimated dependence provides an indication of the extent to which activ-

ities in the two areas are coordinated. Later, in Chapters 5 and 6, the analysis

of palaeoclimate time series is considered. These signals are inherently irreg-

ularly spaced, with the sampling becoming coarser as we look further back in

time.

Chapter 3 addresses the problem of estimating the dependence between

two regularly sampled nonstationary time series. The bivariate LSW model

is introduced, providing an extension to the univariate LSW model (Nason

et al., 2000). Stemming from this formulation, we propose a novel measure

of wavelet coherence termed ‘locally stationary wavelet coherence’, which pro-

vides a direct measure of the linear dependence between two nonstationary

series. Chapter 4 addresses several issues relating to the practical implementa-

tion of our methodology, discussing several options for ensuring stability. The

method is then demonstrated on a simulated example as well as real experi-

mental data from neuroscience. The work of this chapter also appears in the

2



paper by Sanderson et al. (2010).

The work of Chapter 5 is motivated by the problem of estimating the spec-

tral characteristic of irregularly spaced time series. The chapter first reviews

the work of Knight and Nason (2008) who propose a nondecimated lifting

transform for irregular data, based on the one coefficient at a time lifting

scheme (Jansen et al., 2001). This methodology can also be used to define a

periodogram (Knight et al., 2010). Our contribution to this area arises from

our chosen application in climatology. A relationship between wavelet lifting

scale and Fourier frequency is established, aiding the physical interpretation

of our results. We also discuss some of the limitations of the methodology and

propose a technique for improving the clarity of the resulting periodogram

estimates.

Chapter 6 extends the ideas of Chapter 5 to the bivariate setting, presenting

a method that enables the estimation of the dependence between two irregu-

larly sampled time series. To provide an estimate of phase between the series,

a complex valued extension to the standard one coefficient at a time scheme of

Jansen et al. (2001) is introduced. The work of this chapter is demonstrated by

estimating the coherence and phase between two different temperature proxy

records.

Chapter 7 concludes with a summary of our work and some interesting

ideas for future research.

3



Chapter 2

Literature review

2.1 Wavelet theory

This chapter provides an overview of aspects of the literature which are essen-

tial to the remainder of this thesis. Firstly we provide a brief background to

Fourier theory, which serves as a useful reference for the non-stationary meth-

ods that are introduced later on. Wavelets are then introduced, providing

‘building blocks’ which are naturally suited to non-stationary data. Section

2.2 reviews the wavelet lifting scheme which allows the principles of wavelet

analysis to be extended to more general situations. This includes a description

of the one coefficient at a time lifting scheme that is implemented in later

chapters. Finally, Section 2.3 introduces the topic of time series analysis and

in particular the locally stationary wavelet model.

2.1.1 Review of Fourier analysis

Before introducing wavelets, we start by first reviewing some relevant concepts

from Fourier theory. An understanding of these methods provides motivation

for the use of wavelets, since certain signals cannot be represented efficiently

using Fourier sines and cosines. Fourier methods also provide a useful bench-

mark for comparison with the local methods introduced in later chapters. Our

4



2.1. Wavelet theory

review follows the description in Priestley (1981, Chapter 4) and the original

text can be consulted for a more detailed discussion. Thorough descriptions

of Fourier analysis and its applications can be found in e.g. Stade (2005) and

Folland (2009).

In Fourier analysis, sine and cosine waves can be used to form bases for

functions in L2(R), that is the space of square integrable functions defined by

g ∈ L2(R) iff
∫∞
−∞ g(t)2dt <∞. We start by recalling the definition of Fourier

series.

Definition 2.1.1. Let g be periodic with period 2π so that g(ω) = g(ω + 2π)

and be square integrable over the interval [−π, π). Then the Fourier series

representation of g is:

g(x) =
a0

2
+
∑
n

(
an cos(nx) + bn sin(nx)

)
, n ∈ Z,

where the Fourier coefficients are calculated from

an =
1

π

∫ 2π

0

g(x) cos(nx) dx, bn =
1

π

∫ 2π

0

g(x) sin(nx) dx.

The magnitude of the Fourier coefficients an and bn reveals the frequency

content of the signal. The Fourier sinusoids {cos(nx), sin(nx)}n∈N form an

orthonormal basis and hence can be thought of as basic ‘building blocks’ from

which periodic functions of various forms may be constructed.

The decomposition of periodic functions into Fourier series representations

can be extended to the case of non-periodic functions in L1(R), the space of

absolutely integrable functions defined by g ∈ L1(R) iff
∫∞
−∞ |g(t)|dt <∞. The

Fourier transform is defined as follows:

Definition 2.1.2. The Fourier transform of a function g ∈ L1(R) is given by

ĝ(ω) =
1√
2π

∫
R
g(x)e−iωxdx.
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If ĝ is the Fourier transformation of g, and ĝ, g ∈ L1(R) then the inverse

Fourier transform is given by

g(x) =
1√
2π

∫
ĝ(ω)eiωxdω. (2.1)

Here ω is the angular frequency, and ω is related to the Hertz frequency

f by the relationship ω = 2πf . Unlike the Fourier series decomposition of a

periodic function which involves a discrete set of frequencies, in the Fourier

integral representation, frequency varies on a continuous scale.

When representing a series by a combination of basis functions, it is gener-

ally desirable that the representation be sparse, in the sense that there are only

a few non-zero coefficients. This is beneficial for understanding the structure

of the signal and also leads to better signal compression. Sparse decompo-

sitions are achieved by using basis functions with similar properties to the

function they are representing. Although Fourier sinusoids are localised in

frequency, they are non-local in time. Therefore Fourier sinusoids are suitable

for representing smooth functions which exhibit periodicity but do not provide

economical representations for series with local features such as sharp changes

and discontinuities. In order to represent functions of this type it is desirable

to use basis functions which themselves are local. This requirement is met by

wavelets, which we now introduce.

2.1.2 Wavelets

Wavelets can be thought of as small, localised oscillations. Unlike Fourier

series, locality can be achieved in both the time and frequency domains si-

multaneously, providing a natural foundation for representing nonstationary

functions. For an in-depth discussion of wavelets see Daubechies (1992), Mal-

lat et al. (1989), or Vidakovic (1999). Following Vidakovic (1999, Chapter 3),

we define a wavelet, ψ ∈ L2(R), to be any function which satisfies

6



2.1. Wavelet theory

Cψ =

∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω <∞, (2.2)

where Ψ(ω) is the Fourier transform of ψ(x). Condition (2.2) is referred to

as the admissibility condition and ensures that the wavelet is localised in fre-

quency. The admissibility condition also implies that Ψ(0) = 0 so that

∫ ∞
−∞

ψ(x)dx = 0, (2.3)

which ensures ψ(x) is localised in time (as it implies ψ ∈ L1(R)) and is oscilla-

tory. Given a ‘mother’ wavelet, ψ, a sequence of wavelets can be constructed

by taking translations and dilations of ψ. For dilation parameter a ∈ R\{0}

and translation parameter b ∈ R we define

ψa,b(x) = |a|−1/2ψ
(x− b

a

)
. (2.4)

The normalisation parameter in this representation, |a|−1/2, ensures that the

L2 norm of ψ is independent of a and b: ‖ψa,b‖ = ‖ψ‖. As described later, it is

possible to choose a and b so that the collection {ψa,b}a,b forms an orthonormal

basis.

An important property of a wavelet, useful for function representation, is the

number of vanishing moments. The wavelet ψ is said to have n+ 1 vanishing

moments if

∫ ∞
−∞

xkψ(x)dx = 0, for all k ∈ {0, 1, ..., n}. (2.5)

The vanishing moments property of a wavelet implies that the wavelet coef-

ficients of polynomials of degree n or less are annihilated in a decomposition

on such a wavelet basis. This property therefore has important implications

for selecting a wavelet basis that will lead to economical representations of a

given function.

7
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Haar wavelets (Haar, 1910) are perhaps the simplest example of a wavelet

system. The Haar mother wavelet is defined by

ψH(x) =


1 for x ∈ [0, 1/2),

−1 for x ∈ [1/2, 1],

0 otherwise.

Using equation (2.4) the translations and dilations for a ∈ R+, b ∈ R of the

Haar mother wavelet are given by

ψHa,b(x) =


1√
a

for x ∈ [b, a/2 + b),

−1√
a

for x ∈ [a/2 + b, a+ b),

0 otherwise.

The Haar mother wavelet is shown in Figure 2.1. It can be seen that the

Haar wavelet has one vanishing moment and so the associated coefficients will

be zero only for constant functions.
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Figure 2.1: Haar mother wavelet, ψ1,1(x), and translated/dilated Haar mother
wavelet, ψ3,3(x).
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The Continuous wavelet transform

For a function g(x) ∈ L2(R), the continuous wavelet transform is defined as

CWTg(a, b) = 〈g, ψa,b〉 =

∫
g(x)ψa,b(x)dx, (2.6)

for b ∈ R, a 6= 0 and where ψa,b(x) is the complex conjugate of ψa,b(x). As-

suming ψ satisfies the admissibility condition, it is possible to find the inverse

continuous wavelet transformation via a relation which is known as the reso-

lution of the identity :

g(x) =
1

Cψ

∫
R2

CWTg(a, b)ψa,b(x)
dadb

a2
, (2.7)

where Cψ is the quantity defined in equation (2.2). There are many wavelets

that can be used here, including the Haar wavelet introduced earlier. For fur-

ther examples of wavelets for the CWT see Vidakovic (1999, Section 3.1.2).

Equation (2.7) shows that any g ∈ L2(R) can be approximated by a super-

position of wavelet basis functions. Comparing this to the Fourier transform

representation in equation (2.1), we see that in the Fourier decomposition the

coefficients provide information about the amplitude associated with each fre-

quency. In the wavelet decomposition the coefficients provide information on

the amplitude of the wavelet both at a given scale (equivalent to frequency) and

also location. Further information on the CWT can be found in Daubechies

(1992, Chapter 2).

Discretisation

The work of Chapters 3 and 4 concentrates on discrete wavelet constructions

rather than continuous representations as outlined above. The CWT is a re-

dundant transform (i.e. unlike the Fourier sinusoids, the CWT wavelet bases

are not orthonormal). However by discretising a and b it is possible to con-

struct transformations with less redundancy. Given suitable choices of ψ and

9
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restricting a = 2−j, b = k2−j for j, k ∈ Z, the so called dyadic translations and

dilations given by

ψj,k(x) = 2j/2ψ(2jx− k), (2.8)

can be made to form an orthonormal basis for L2(R). This choice of a and b

is known as the critical sampling rate (Vidakovic, 1999, Chapter 3). A finer

choice of sampling rate will lead to a transformation with redundancy, while a

coarser sampling rate will not maintain the invertibility of the transform.

Another common choice of a, b is given by a = 2−j, b = k, which leads to

a so called non-decimated transform (Vidakovic, 1999):

ψj,k(x) = 2j/2ψ(2j(x− k)). (2.9)

Here wavelets exist at all integer locations rather than with dyadic spacing and

the transformation is therefore translation equivariant (as will be discussed

further in Section 2.1.5). The nondecimated transform is redundant.

Before discussing the implementation of these transformations, we first

provide some further examples of wavelets which will be relevant to the later

chapters of this thesis.

Examples of wavelets

The Daubechies Extremal Phase family of wavelets (Daubechies, 1992) are

compactly supported with the minimum support possible for a given number

of vanishing moments. These wavelets are indexed by the number of vanishing

moments, n, and include the Haar wavelet system, specified when n = 1.

The Daubechies Least Asymmetric family of wavelets are also of compact

support and indexed by the number of vanishing moments but are, as the name

suggests, constructed so that the resulting wavelets are closer to symmetric.

These families of wavelets do not have a closed-form analytic representation

in the time domain. A rigorous exploration of the properties and construction

of these wavelets is provided in Daubechies (1992, Chapter 6,7) and Percival
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Extremal Phase, N=2
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Figure 2.2: Daubechies Extremal phase (top row) and Least Asymmetric (bot-
tom row) wavelets with N vanishing moments, plotted using Wavethresh (Na-
son et al., 2008).

and Walden (2000, Chapter 4). Examples of the Daubechies Extremal Phase

and Least Asymmetric families of wavelets are shown in Figure 2.2.

The Shannon wavelet is compactly supported in the Fourier domain, but

has infinite support in the time domain. Following Chui (1997), the Shannon

mother wavelet and its Fourier transform are given by

ψ(x) =
sin(2πx)− cos(πx)

π(x− 1/2)
,

ψ̂(ω) = − exp(−iω/2)I[−2π,−π)∪(π,2π](ω).
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Although rarely used in practice, its compact support in the Fourier domain

means that the Shannon wavelet is often useful in a theoretical setting. As

noted in Chui (1997), Daubechies wavelets with high numbers of vanishing

moments ‘imitate’ the Shannon wavelet and so the Shannon wavelet can be

thought of as the limiting wavelet of this family.

2.1.3 Multiresolution analysis

First proposed by Mallat et al. (1989) and Meyer (1992), a multiresolution

analysis (MRA) is a mathematical structure which allows signals to be ex-

amined at different scales; ‘zooming out’ to look at the signal in an overall

sense or ‘zooming in’ to study finer details. MRA is important in the con-

struction of wavelet bases and also leads to the discrete wavelet transform. A

multiresolution analysis is defined as follows:

Definition 2.1.3. A multiresolution analysis of L2(R) is a system of closed

subspaces {Vj}j∈Z of L2(R) such that

1. They lie in a containment hierarchy: . . . V−1 ⊂ V0 ⊂ V1 ⊂ . . .

2.
⋃
j∈Z Vj = L2(R), i.e the union is dense in L2(R). Here the overbar

denotes closure.

3.
⋂
j∈Z Vj = {0} , i.e the intersection is trivial.

4. f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, ∀ x ∈ R.

5. f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0 ∀ k ∈ Z, x ∈ R.

6. There exists a scaling function φ ∈ V0, such that {φ(x − k)}k∈Z is an

orthonormal basis in V0.

Conditions (4) (5) and (6) imply that {φj,k := 2j/2φ(2jx − k)}k∈Z is an

orthonormal basis for the space Vj (Vidakovic, 1999). We also have V0 ⊂ V1
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and so the function φ(x) ∈ V0 can be represented as a linear combination of

functions from V1:

φ(x) =
∑
k

hk
√

2φ(2x− k), (2.10)

for some coefficients hk, k ∈ Z. This equation is known as the scaling equation

and is fundamental in the construction of wavelets. The coefficients {hk}k∈Z
are referred to as the low-pass filter associated with φ.

The scaling function gives a series of pictures of the signal, each resolution

level differing by a factor of two (Hubbard, 1996). For example, the Haar

scaling function is given by φ(x) = I[0,1), the indicator function taking the

value 1 on the interval [0, 1) and zero elsewhere. It is clear that the integer

translates form an orthonormal basis since they are indicator functions on

disjoint unit intervals. Moving to the next coarsest level, the first two integer

translates (i.e. k = 0, 1) of the scaling function are given by

φ−1,0(x) =
1√
2
φ(x/2) =

1

2
I[0,2),

φ−1,1(x) =
1√
2
φ(x/2− 1) =

1

2
I[2,4),

thus ‘zooming out’ on the signal. An approximation of a function, f , at reso-

lution level j is given by

fj(x) =
∑
k∈Z

cj,kφj,k(x) = Pjf,

where Pj is the projection operator of f onto the space Vj and cj,k =< f, φj,k >.

This shows that every function in L2(R) can be approximated by elements of

the subspaces Vj. As j increases, the precision of this approximation increases,

so that limj→∞Pjf = f for all f ∈ L2(R) (Daubechies, 1992, Chapter 5). As

we now detail, wavelets encode the difference (i.e. the detail lost) when moving

from one scale to the next coarsest level.
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Derivation of the wavelet function

When a sequence of subspaces satisfies the MRA properties, there exists an

orthonormal basis for L2(R), given by

{ψj,k(x) = 2j/2ψ(2jx− k) for j, k ∈ Z},

where ψj,k(x) are the integer translations and dilations of ψ(x) = ψ0,0(x),

known as the wavelet function or mother wavelet. To demonstrate this, con-

sider the detail information that is lost by moving from one resolution space,

Vj+1, to a coarser space Vj. This is quantified by the detail space Wj, which is

the orthogonal complement of Vj in Vj+1:

Vj+1 = Vj ⊕Wj, (2.11)

This is true for all j, and so successive application of this relationship gives

Vj+1 = V0 ⊕
j⊕
i=0

Wi. (2.12)

Furthermore, remembering that
⋃
j∈Z Vj is dense in L2(R) we obtain

L2(R) =
⊕
j∈Z

Wj. (2.13)

Thus an L2-function can be decomposed into mutually exclusive subspaces, Wj,

containing information at different scales. Also, the detail subspaces inherit

the scaling property from Definition 2.1.3:

f(x) ∈ Wj ⇐⇒ f(2x) ∈ Wj+1.

Therefore if a function, ψ(x), is found such that its integer translations form

an orthonormal basis of W0, then through dyadic dilations and translations,

{ψj,k(x)}k∈Z is an orthonormal basis for the difference spaceWj, and {ψj,k(x)}j,k∈Z
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provides an orthonormal basis for L2(R). We have ψ(x) ∈ W0 ⊂ V1, and so

the wavelet function can be expressed as

ψ(x) =
√

2
∑
k

gkφ(2x− k). (2.14)

Here the coefficients {gk}k∈Z are, due to their action in the frequency domain,

called the high-pass filter. One possible solution to this equation (Daubechies,

1992, Chapter 5) is to set

gk = (−1)kh1−k, (2.15)

where hk is the low-pass filter introduced in equation (2.10). Filters linked

with this relation are called quadrature mirror filters. Note also, that the

filters satisfy the orthogonality relation (Vidakovic, 1999, Section 3.3):

∑
n∈Z

hnhn−2k = δk,0 and
∑
n∈Z

gngn−2k = δk,0. (2.16)

2.1.4 Discrete wavelet transform

The cascade algorithm for computing the discrete wavelet transform (DWT)

was proposed by Mallat et al. (1989). Based on multiresolution analysis, it

provides an efficient scheme for performing a discrete, wavelet-based transfor-

mation.

Consider the following refinement relationships, which can be shown by

substitution of indices in the scaling equations (2.10) and (2.14):

φj−1,k(x) =
∑
l∈Z

hl−2kφj,l(x) and ψj−1,k(x) =
∑
l∈Z

gl−2kφj,l(x). (2.17)

Denoting the coefficients associated with φj,k and ψj,k as cj,k and dj,k respec-

tively, use of the refinement equations leads to the following recursive relation
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between the coefficients:

cj−1,k = 〈f, φj−1,k〉 ,

=

〈
f,
∑
l∈Z

hl−2kφj,l,

〉
=

∑
l∈Z

hl−2k 〈f, φj,l〉 ,

=
∑
l∈Z

hl−2kcj,l. (2.18)

And similarly for the detail coefficients we obtain

dj−1,k =
∑
l∈Z

gl−2k cj,l. (2.19)

Hence, denoting cj = {cj,k}k∈Z and dj = {dj,k}k∈Z, if we have the coefficients

cj and dj at a particular resolution level, we can obtain the coefficients at the

next level, cj−1 and dj−1, by application of equations (2.18) and (2.19). Thus

it is possible to represent a function in L2(R) by:

f(x) =
∑
k∈Z

cj0,kφj0,k(x) +
∑
j≥j0

∑
k∈Z

dj,kψj,k(x). (2.20)

The coefficients cj,k and dj,k are often referred to as the scaling coefficients

and the detail (or wavelet) coefficients, respectively. The detail coefficients,

dj,k, provide local information about the function at scale j, where the scaling

coefficients provide information on the ‘smooth’ global behavior.

Given a function, f , observed at 2J equally spaced time points n = 1, .., 2J ,

if we have the scaling coefficients at the finest scale, cJ, it is possible to con-

struct the detail and scaling coefficients for all scales j < J . Since we only

know the function values at the observed locations n = 1, ..., 2J , it is not pos-

sible to calculate the scaling coefficients at the finest scale exactly; we need to

approximate them in some way. It is assumed that the finest scaling coefficients

16



2.1. Wavelet theory

Figure 2.3: Diagram of the decomposition of a function using the DWT
through successive applications of the high and low pass filters g and h.

can be approximated by the function values, giving:

cJ,n = fn. (2.21)

Thus using the low and high pass filters hk and gk = (−1)kh1−k (specified

by the wavelet), the expansion coefficients can be calculated recursively for

each scale j < J , using the decomposition relations (2.18) and (2.19). Each

application of the filter g and h produces a new sequence of half the length.

Starting with the data, cJ, of length T , one application of each filter provides

the new sequences cJ−1 and dJ−1 of length T/2. The wavelet coefficients dJ−1

are stored as these provide the finest level details. The vector cJ−1 is then used

in the next stage of the algorithm to produce the next level detail and smooth

coefficients, and so on until the desired level of decomposition has been met.

This gives the transformed data vector:

DWT(f) = (cj0 ,dj0 ,dj0+1, . . . ,dJ−1),
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where the vector cj0 represents the smooth coefficients at the primary resolu-

tion level. A full decomposition of a series of length T is conducted so that

the primary resolution level j0 = 0 and the vector of smoothing coefficients at

this level c0 is of length 1.

The DWT can also be recursively reversed. The scaling coefficients at each

scale can be obtained from the scaling coefficients at the previous coarser scale

using the following relationship:

cj,k =
∑
l∈Z

cj−1,lhk−2l +
∑
l∈Z

dj−1,lgk−2l. (2.22)

Example decomposition using Haar wavelet

For a clear illustration of the DWT in practice, we provide an example of using

the Haar wavelet to decompose a four element vector. For the Haar wavelet

the the low and high pass filters are given by

h0 =
1√
2
, h1 =

1√
2

and hk = 0 otherwise.

g0 =
1√
2
, g1 =

−1√
2

and gk = 0 otherwise.

We start by defining the finest level scaling coefficients as the function values:

c2 = (c2,0, c2,1, c2,2, c2,3) = (3, 4, 2, 2).

Then by applying equations (2.18) and (2.19) we obtain the new sequences

c1 and d1 of length 2:

c1,0 =
∑
l

hlc2,l = 1/
√

2 · 3 + 1/
√

2 · 4 = 7/
√

2,

c1,1 =
∑
l

hl−2c2,l = 1/
√

2 · 2 + 1/
√

2 · 2 = 4/
√

2,
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d1,0 =
∑
l

glc2,l = 1/
√

2 · 3− 1/
√

2 · 4 = −1/
√

2,

d1,1 =
∑
l

gl−2c2,l = 1/
√

2 · 2− 1/
√

2 · 2 = 0.

Giving c1 = (c1,0, c1,1) = (7/
√

2, 4/
√

2) and d1 = (d1,0, d1,1) = (−1/
√

2, 0).

Continuing to the next coarsest scale using the same formula, we obtain

c0,0 =
∑
l

hlc1,l = 1/
√

2 · 7/
√

2 + 1/
√

2 · 4/
√

2 = 11/2,

d0,0 =
∑
l

gl−2c1,l = 1/
√

2 · 7/
√

2− 1/
√

2 · 4/
√

2 = 3/2,

and so we obtain the transformed data vector (c0,0, d0,0, d1,0, d1,1). The original

data vector can be recovered from the collection of wavelet coefficients and

coarsest level smooth using the inverse DWT defined in equation (2.22).

Boundary issues

Issues occur with the DWT when the support of the wavelet filter used in

the decomposition extends beyond the length of the input vector. There are

several approaches to dealing with boundary problems. As detailed in Nason

and Silverman (1994), options include assuming symmetry so that the func-

tion data can be reflected at the endpoints to extend further than the original

sampled function vector. The function could also be assumed to be periodic

on the range of the data, and the range of the original series extended accord-

ingly. Another method is to pad the observed series with zeros outside of the

observation range.

2.1.5 Nondecimated wavelet transform

An undesirable property of the DWT is that it is not translation invariant. This

means that starting the transform from a different point in the series could
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lead to a different decomposition of the data. Motivated by this, Coifman and

Donoho (1995) and Nason and Silverman (1995) discuss the translation invari-

ant or nondecimated wavelet transform which computes wavelet coefficients at

all possible scales and locations.

To describe the NDWT, we continue with the toy example from the pre-

vious section: c2 = (c2,0, c2,1, c2,2, c2,3) = (3, 4, 2, 2). Recall that for the DWT,

the level 1 detail and smooth coefficients were computed by comparing the

pairings (c2,0, c2,1) and (c2,2, c2,3). If an extra data point was to be added to the

beginning of the series, then we would be considering an entirely different set

of pairings. The NDWT avoids this problem by considering all pairs of neigh-

bours. So that for this example (and assuming periodic boundary conditions),

the level 1 smooth coefficients are given by

c1,0 = (
1√
2
,

1√
2

) · (c2,0, c2,1) =
7√
2
,

c1,1 = (
1√
2
,

1√
2

) · (c2,1, c2,2) =
6√
2
,

c1,2 = (
1√
2
,

1√
2

) · (c2,2, c2,3) =
4√
2
,

c1,3 = (
1√
2
,

1√
2

) · (c2,3, c2,0) =
5√
2
.

The first level wavelet coefficients are calculated similarly, but replacing the

low pass filter with the high pass filter ( 1√
2
, −1√

2
) to give d1 = 1√

2
(−1, 2, 0,−1).

Unlike the DWT, the new sequences c1 and d1 both have the same length as

the original data. Continuing to the next level, zeros are inserted between each

two elements of the wavelet filters. The next level smooth coefficients are

c0,0 = (
1√
2
, 0,

1√
2
, 0) · (c1,0, c1,1, c1,2, c1,3) =

11

2
,

c0,1 = (
1√
2
, 0,

1√
2
, 0) · (c1,1, c1,2, c1,3, c1,0) =

11

2
,

c0,2 = (
1√
2
, 0,

1√
2
, 0) · (c1,2, c1,3, c1,0, c1,1) =

11

2
,

c0,3 = (
1√
2
, 0,

1√
2
, 0) · (c1,3, c1,0, c1,1, c1,2) =

11

2
.

The wavelets coefficients are calculated similarly to give d0 = 1
2(−3, 1,−3, 1).
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2.1.6 Extensions to classical wavelet methods

There have been many extensions to the classical wavelet methods introduced

in this chapter. In this section we provide only a brief summary of some of the

most common extensions. Further methods and more detailed explanations

can be found in e.g. Vidakovic (1999) and Nason (2008).

Multiresolution analysis and the construction of wavelet bases can also be

generalised to spaces of higher dimensions. Mallat et al. (1989) proposed a

multivariate version of the DWT, by considering wavelets ψ ∈ L2(Rd).

Wavelet packets were introduced by Coifman and Wickerhauser (1992).

They are collections of linear combinations of wavelet functions, providing

a generalisation of standard orthonormal wavelet bases. The collection of

their dilations and translations forms a ‘library’ of all packet functions. Since

wavelet packets provide greater flexibility than classical wavelet methods they

are capable of providing more efficient representations. When using wavelet

packets to decompose a signal, both the low and high pass filters are applied

at every step of the transform, to the scaling coefficients and also to the de-

tail coefficients. Coifman and Wickerhauser (1992) also introduce a method

for searching subsets of coefficients for the ‘best basis’ representation. There

are also other examples of basis libraries, for example the smoothed localized

complex exponentials (SLEX) library of Ombao et al. (2002).

First introduced by Cohen et al. (1992), biorthogonal wavelet bases utilise

different wavelets for the decomposition and reconstruction steps. The orthog-

onality constraint is relaxed and instead these wavelets satisfy biorthogonality

criteria. This approach leads to more flexibility allowing greater symmetry

whilst maintaining compact support. The lifting scheme, which is reviewed in

Section 2.2, provides a method of creating biorthogonal wavelets.

The unbalanced Haar wavelet basis was introduced by Girardi and Sweldens

(1997). Unlike traditional Haar wavelets, jumps in the basis functions do

not necessarily occur in the middle of their support and therefore avoid the
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restriction of jumps occurring at dyadic locations.

Lina and Mayrand (1995) provide a detailed description of complex-valued

Daubechies wavelets. The complex valued wavelet with N = 3 was also de-

rived by Lawton (1993). Complex valued wavelet decompositions can also be

obtained using the dual tree complex wavelet transform (CWT) introduced

by Kingsbury (2001). The CWT produces the real and imaginary coefficients

using two different real valued filters which are orthogonal to each other. This

method is described in more detail in Chapter 6, when we consider estimating

the dependence and phase between two signals using wavelet lifting.

2.1.7 Statistical applications of wavelets

As seen throughout this chapter, wavelets have desirable properties which make

their use attractive in many applications. In particular, due to their natural

localisation wavelets can provide sparse representations for certain functions

that cannot be represented efficiently using Fourier series. Also, unlike in

Fourier analysis where there is only one fixed basis, there are several families

of discrete wavelets with varying properties to choose from. This means that

the basis can be selected to suit the properties of the particular function that

is being analysed. In this section we briefly mention the main uses of wavelets

in statistics. Further descriptions can be found in Nason (2008), Antoniadis

(2007), Abramovich et al. (2000), Antoniadis (1999), and Vidakovic (1999).

This thesis is concerned with the application of wavelets in time series

analysis (see Section 2.3 for an introduction to time series). A review of some

of the core concepts and applications of wavelets in time series analysis can be

found in Nason and von Sachs (1999). In Section 2.3.4 we review the use of

wavelets in estimating the time dependent spectra of nonstationary processes

using the locally stationary wavelet model of Nason et al. (2000). This method,

and the associated methods introduced in later chapters, provide techniques

for visualising the features of complicated time series and aiding interpretation.
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Other applications of wavelets in time series analysis include change point

detection (Davis et al. (2006) and Cho and Fryzlewicz (2010)), estimation

of self-similarity parameters of long-memory time series (Wang et al., 2001),

forecasting (Fryzlewicz et al., 2003) and classification (Fryzlewicz and Ombao,

2009).

Wavelets are often used for nonparametric regression. The basic idea is to

denoise the signal by modifying the noisy wavelet coefficients according to some

rule. The inverse DWT is performed on the modified coefficients, providing

an estimate of the noise free signal. Donoho and Johnstone (1994) proposed

the non-linear estimation technique of thresholding. There have been many

subsequent extensions to the the original wavelet thresholding methodology, for

example Barber and Nason (2004) introduce various thresholding techniques

using complex wavelets, Coifman and Donoho (1995) introduce translation

invariant denoising based on the NDWT and Nason (1996) proposes using

cross validation to select the threshold.

The estimation of probability density functions using wavelets is another

popular application, see e.g. Hall and Patil (1995), Donoho et al. (1996),

Antoniadis et al. (1999). Wavelet estimators provide accurate estimates for

densities with sharp changes or discontinuities. However unlike kernel density

function estimates, wavelet estimators do not guarantee non-negative density

estimates. A modification to wavelet methods, Slepian semi-wavelets, were

introduced by Walter and Shen (2005) to overcome the problem of negative

estimates.

2.2 The wavelet lifting scheme

As described in the previous section, wavelets provide a useful tool for func-

tion decomposition and, through the use of the DWT (or NDWT), a sampled

signal can be represented efficiently as a set of wavelet coefficients. Although

classical wavelet techniques have proved useful in many settings, there are also
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limitations of these methods. In particular, the classical DWT and NDWT

rely on regular spacing of observations.

Techniques for dealing with irregular data often involve pre-processing the

data to a regular grid. One disadvantage of pre-processing methods is that

they typically result in a loss of information at high frequencies, an effect that

we would like to avoid. This, and further solutions, will be discussed in more

detail in Chapter 7 in the context of periodogram estimation. The solution to

this problem that we present arises from a new way for building wavelets known

as the lifting scheme. The lifting scheme was introduced by Sweldens (1996) to

handle more general settings than the standard wavelet transformations and

provides a natural approach to extending classical wavelet techniques to irreg-

ular grids. Wavelet functions obtained through the lifting scheme are known

as second generation wavelets. Unlike the first generation wavelets introduced

in Section 2.1.2, second generation wavelets are not necessarily translates and

dilates of the same function.

In what follows, we review wavelet lifting from a computational perspective.

A more rigorous exposition, including a description of multiresolution analysis

from the second generation viewpoint, can be found in the original text of

Sweldens (1996). We start by introducing the general lifting approach, before

describing one coefficient at a time wavelet lifting, a particular type of lifting

that can be used for problems with irregular sampling.

2.2.1 Computational approach to wavelet lifting

We begin by introducing the general specification of the wavelet lifting scheme.

Assume we have observations f1, ..., fn of a function f , observed at time points,

x1, ..., xn. For now we assume that the observation times are equally spaced.

At the first stage, n, of the decomposition, define cn,k = fk so that the finest

level scaling coefficients interpolate the data. A single stage of the lifting trans-

form is composed of the following 3 steps:
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2.2. The wavelet lifting scheme

Figure 2.4: Schematic of stage n of the general lifting transform.

• Split: The data is divided into two disjoint subsets, with I and J denot-

ing the indexing sets of the two groups so that I ∪ J = {1, ..., n}. The

definition of subsets depends on the application but one example is to

take I and J to be the sets of odd and even indices. We then denote cI
n

the vector (cn,i, i ∈ I) and cJ
n the vector (cn,j, j ∈ J).

• Predict: cI
n is used to give a prediction of cJ

n, denoted c̃J
n = P (cI

n). Here

P is the prediction function, specific to the particular lifting scheme. The

difference between the observed and predicted values provides the detail

coefficients of this step:

dn−1 = cJ
n − c̃J

n.

• Update: cI
n is then updated according to the calculated detail coeffi-

cients, and the update function U specified by the lifting scheme. This

provides the next level smooth:

cn−1 = cI
n + U(dn−1).
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The update step serves to preserve some quantity from the initial signal, such

as the mean value. The procedure is repeated until the signal has been decom-

posed to the desired level, giving the vector (cj0 ,dj0 ,dj0+1, . . . ,dn−1), where j0

is the primary resolution level of the decomposition. The finest scale wavelet

coefficients are denoted dn−1, the next finest scale are denoted dn−2 and so

forth until the coarsest level detail coefficients, which are denoted dj0 .

The lifting algorithm can also be easily reversed, obtaining the vector cn from

the coarser level smooth cn−1 and the associated detail coefficients, dn−1, as

follows:

• Undo update:

cI
n = cn−1 − U(dn−1).

• Undo predict:

cJ
n = dn−1 + c̃J

n.

• Merge:

cn = merge(cI
n, c

J
n),

The inverse transform uses the same operators, P and U , as with the forward

transform, but with a reversal of sign at each step.

Haar transform using wavelet lifting

To give a specific example of the lifting transform in practice, we consider the

Haar transform in a wavelet lifting setting. Using the same example as in

Section 2.1.4, we start with the data vector {fk}k=1,..,4 = (3, 4, 2, 2) and set

n = 2, defining the level which contains the data. The finest level smooth is

assumed to interpolate the data, giving

c2 = (c2,1, c2,2, c2,3, c2,4) = (3, 4, 2, 2).
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The data is split into two sets, I and J corresponding to odd and even indices.

cI2 = (3, 2) cJ2 = (4, 2)

In the case of the Haar transform, the prediction is carried out by estimating

each odd indexed element with the next even indexed element. So we have

c̃I2,1 = cJ2,1 = 4 and c̃I2,2 = cJ2,2 = 2. The details are then constructed by taking

the difference between the observed and predicted values:

d1,1 = cI2,1 − c̃I2,1 = 3− 4 = −1,

d1,2 = cI2,2 − c̃I2,2 = 2− 2 = 0.

The set of even indexed coefficients, cJ
2, are then updated to form the next

level smooth:

c1,1 = cJ2,1 +
1

2
d1,1 =

1

2
(cJ2,1 + cI2,1) =

7

2
,

c1,2 = cJ2,2 +
1

2
d1,2 =

1

2
(cJ2,2 + cI2,2) = 2.

So we have c1 = (7/2, 2) and d1 = (−1, 0). Repeating the steps at the next

level we obtain

d0,1 = cI1,1 − c̃I1,1 = 7/2− 2 = 3/2,

c0,1 = cJ1,1 +
1

2
d0,1 =

1

2
(cJ1,1 + cI1,1) = 11/4.

Comparing this to the example presented in Section 2.1.4, we see that the

obtained detail coefficients are rescaled versions of that obtained by the DWT

cascade algorithm. In this example we have used the split, predict and update

steps which correspond to the Haar wavelet but, as shown in Daubechies and

Sweldens (1998), all classical filter banks can be decomposed into a sequence

of lifting steps.

As in the first generation wavelet setting, boundary considerations are nec-

essary. Particularly if a high order prediction scheme has been used, there may
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be insufficient data points when lifting near the end points of the signal. At

these points, predictions can be made by extrapolating the signal using copies

of the neighbouring data points.

Many variations on the general wavelet lifting split-predict-update proce-

dure are possible. In the presented example with the Haar wavelet, the data

was split into groups of odd and even indices. Other criteria for splitting the

data are also possible, for example Jansen et al. (2001) introduce a method

that involves selecting just one coefficient at each step. Nunes et al. (2006)

propose an adaptive lifting transform which, based on the one coefficient at a

time lifting scheme, allows for different method of prediction at each stage.

2.2.2 One coefficient at a time wavelet lifting

The one coefficient at a time procedure (OCAAT), first introduced by Jansen

et al. (2001), is a variation on standard wavelet lifting which is suitable for

application to irregularly spaced data. With this type of lifting, the split,

predict and update procedure is followed as with conventional wavelet lifting,

but with just one data point being selected in the ‘split’ step. In order to

account for irregular sampling, the concept of the integral associated with the

scaling function of each point is introduced. Following Jansen et al. (2001),

we now summarise the one coefficient at a time lifting procedure.

Initial definition of points

We start with observations f1, ..., fn of a function f observed at time points

x1, ..., xn where the time points are permitted to be irregularly sampled. As pre-

viously, the scaling functions at the finest level are defined as the characteristic

functions of the intervals associated with each point. This gives φn,k(xi) = δi,k,

setting cn,k = fk.

The sampling of the data is described by means of the integral of the

scaling function of each point. Intervals associated with each gridpoint can
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be constructed by using the midpoints between successive observations as the

interval endpoints. The scaling function is assumed to be zero outside the

support of the interval. The integral of point xk at stage n in the algorithm is

denoted

In,k =

∫
R
φn,k(x)dx.

This is a definite integral with respect to some suitable measure. If the series

is sampled at regular unit intervals then at the first stage of the algorithm,

before any points have been removed, all points will have an integral of 1. It

is also necessary to consider the definition of the intervals associated with the

first and last observations. Following Nunes et al. (2006), the end intervals

are reflected, so that the first and last data points are in fact the midpoints of

their associated intervals.

The algorithm

At the first stage (n) of the lifting algorithm, the set of indices of scaling

coefficients Sn, and the set of indices of wavelet coefficients, Dn, are given by

Sn = {1, .., n},

Dn = ∅.

At the next stage (n − 1) we choose the index of the point to be lifted and

denote this index jn. This point is removed from the set of scaling coefficients

and converted into a detail coefficient so that the new set of indices of scaling

coefficients and wavelet coefficients is

Sn−1 = {1, .., n} \ {jn},

Dn−1 = {jn}.

The point to be lifted, (xjn , cn,jn), is often chosen according to the size of in-

tegral of the scaling function. Removing the point with the smallest integral,
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In,k = mink
∫
R φn,kdx, means that we are removing the point with the finest de-

tail, since the integral accounts for the length of the sampling interval between

points. Regions where the function is sampled more densely will correspond

to smaller integral values.

The set of neighbours, Jn, of the point jn are also identified. Note that

the set of neighbours is indexed by n as the choice will depend on the removal

stage (via the points remaining at that stage).

Once the point to be removed has been identified, it is removed from the

set of scaling coefficients and converted into a detail coefficient using the pre-

diction and update steps, familiar from standard wavelet lifting:

Prediction step: The detail coefficient is found by taking the difference be-

tween the actual value and that which is predicted by its neighbours

djn = cn,jn −
∑
i∈Jn

ani cn,i. (2.23)

The choice of prediction coefficients, ani is dependent on the chosen prediction

method. For a function that is constant over the region of the neighbours, the

wavelet coefficient should be zero and so the weights should satisfy
∑

j a
n
j = 1.

Update step: The scaling coefficients of the neighbouring points are then up-

dated accordingly:

cn−1,i = cn,i + bni djn for i ∈ Jn, (2.24)

where bni are the update weights which will be discussed in more detail later

in the section. For points which are not neighbours, we have:

cn−1,i = cn,i for i /∈ Jn.

The integrals of the scaling functions also need to be updated. This is because

30



2.2. The wavelet lifting scheme

there is a smaller number of scaling functions to account for the same interval.

Only the integrals of the set of neighbours are affected so the updating is

conducted following:

In−1,i = In,i + ani In,jn for i ∈ In. (2.25)

Calculation of updating weights

In the update stage we want to preserve the overall mean of the data, and so

it is necessary to ensure

∑
k∈{1,...,n}

cn,kIn,k =
∑
k

cn−1,kIn−1,k.

Since the only integrals to change in the updating step are those of the neigh-

bours, this can be re-written as

cn,jnIn,jn +
∑
i∈Jn

cn,iIn,i =
∑
i∈Jn

cn−1,iIn−1,i.

Using the relationships provided by the updating step and rearranging gives

∑
i∈Jn

bni In−1,i = In,jn .

The solution to this equation proposed by Jansen et al. (2004) is:

bni =
In,jnIn−1,i∑
i∈Jn I

2
n−1,i

. (2.26)

At each step of the algorithm the scaling and wavelet functions are recursively

constructed from the scaling functions at the coarser level:
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φr−1,i(x) = φr,i(x) + ariφr,jr(x), for i ∈ Jn,

φr−1,i(x) = φr,i(x), for i /∈ Jn,

ψjr(x) = φr,jr(x)−
∑
i∈Jn

briφr−1,i(x).

Their values depend on the prediction and updating weights as well as the

sampling of the data (through the initial definition of the integrals) and the

removal order of the points. This can be contrasted with the wavelets used

in the Classical DWT where, for a given choice of wavelet family, the wavelet

vector ψj is completely defined by the scale j. With the OCAAT lifting scheme,

the wavelet vector used at each scale is indexed according to the removal point.

The concept of scale is different in this context and will be described later in

this section.

Example

To illustrate the OCAAT lifting scheme we provide an example of the removal

of one coefficient using linear prediction with one neighbour either side. Start-

ing with the data vector {fi}i=1,...,6 = (4, 2, 2, 6, 4, 4), sampled at irregularly

spaced time points {xi}i=1,...,6 = (1, 2, 4, 5, 8, 9), we set the finest level smooth

to be the data:

cn = (4, 2, 2, 6, 4, 4).

and we have Sn = {1, 2, 3, 4, 5, 6} denoting the indices of the scaling coefficients

and Dn = ∅ denoting the indices of the detail coefficients. The integrals are

given by {In,i}i∈Sn = (1, 1.5, 1.5, 2, 2, 1).

Split: The point jn = 4 is selected to be removed. This observation will

be converted to a detail coefficient and so we have Sn−1 = {1, 2, 3, 5, 6},

Dn−1 = {4}.

32



2.2. The wavelet lifting scheme

Predict: As defined by the prediction scheme, the set of neighbours is given

by Jn = (3, 5). The detail coefficient is calculated following

d4 = cn,4 −
∑
i=3,5

ani cn,i,

where an3 = 0.75 and an5 = 0.25, giving a detail coefficient of d4 = 3.5.

Update: The integrals of the neighbours are updated according to equation

(2.25) giving {In−1,i}i∈Sn−1 = (1, 1.5, 3, 2.5, 1). Notice that the overall sum of

the integrals remains the same. The updating weights can then be calculated

using equation (2.26) to give bn3 = 2×3
32+2.52

= 0.39, bn5 = 2×2.5
32+2.52

= 0.33. These

weights are then used to update the data vector according to equation (2.24),

giving cn−1 = (4, 2, 3.4, 5.4, 4). The prediction and update steps of this exam-

ple are illustrated in Figure 2.5.

The steps of the one coefficient at a time lifting scheme are repeated until

the specified number of points have been removed. After points jn, jn−1, ..., jr

have been removed, the initial function can be written represented as

f(x) =
∑
i∈Sr−1

cr−1,i φr−1,i(x) +
∑

k∈{n,n−1,...,r}

djk ψjk(x).

Definition of scale

From Jansen et al. (2004) we have that a useful measure of scale for the wavelet

ψjr is the integral of the scaling function for site jr at the last stage before the

observation is removed from future consideration. This scale is denoted αjr

and is defined as

αjr = Ir−1,jr−1 . (2.27)
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Figure 2.5: Stage n of the one coefficient at a time lifting scheme using linear
prediction with one neighbour either side of the removal point. The first figure
shows the prediction of point jn = 4 and the second figure shows the process
of updating the neighbours and integrals.
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As seen later in Chapters 5 and 6, in practice it is common to work with

log2(αjr). Unlike the DWT, in the one coefficient at a time lifting setting

scale is now a continuous measure. Assuming that the prediction weights, aj

are strictly positive, the scales αjr are a monotonic function of the index r

and the order in which the lifting scheme determines the coefficients (Jansen

et al., 2004). However, as noted by Nunes et al. (2006), for certain choices of

prediction scheme it is possible that the prediction weights can take negative

values. This implies that when updating the integrals according to equation

(2.25) the integrals will become smaller rather than larger.

2.3 Time series analysis

A discrete time series is a family of random variables, {Xt, t ∈ T}, where the

index set T is often a set of time points. An observed realisation of the process,

xt, is also referred to as a time series. We are predominantly interested in

discrete time series; however it is also possible to obtain continuous time series,

obtained when observations are recorded continuously over some time period.

For continuous time series we use the notation x(t). A key characteristic of

time series data is that successive observations are (generally) not independent.

The observations taken over time may have an internal structure, such as

autocorrelation or season variation. Examples of time series arise from diverse

and numerous fields such as economics (e.g. share prices on successive days)

and meteorology (e.g. measurements of rainfall, temperature). In particular,

we shall be considering the application of time series methods to data from an

experiment in neuroscience, and palaeoclimatic data extracted from ice-cores.

Interesting reference books on time series include that of Priestley (1981),

Chatfield (2003), Hamilton (1994) and Brockwell and Davis (2006).

In order to make inferences on the characteristics of a time series, it is

necessary to impose assumptions on its evolution. In some situations it is

possible to assume that the time series is stationary. Intuitively, a time series
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is said to be stationary if there is no systematic change in characteristics of

the time series over time. More formally we can define a time series in terms

of weak stationarity or strict stationarity. A time series is said to be strictly

stationary if the joint distribution of observations is not a function of time,

i.e. the joint distributions of (Xt1 , ..., Xtk)′ and (Xt1+h, ..., Xtk+h)
′ are the same

for all positive integers k and for all t1, ..., tk, h ∈ Z. Often this assumption

is relaxed to that of weak (or covariance) stationarity. For a zero mean time

series Xt, its auto-covariance function is given by cX(t, t + τ) = E(XtXt+τ ).

Xt is said to be weakly stationary if E|Xt|2 <∞ and cX(t, t+ τ) for t, τ ∈ Z,

is dependent only on the time lag, τ , and not the value of t. In this case, the

time independent autocovariance is denoted cX(τ).

Any weakly stationary, discrete time series {Xt} with mean zero can be

decomposed using the Cramér representation:

Xt =

∫ π

−π
A(ω) exp(iωt)dZ(ω), (2.28)

where A(ω) is the amplitude and {Z(ω)} is a random process with orthonor-

mal increments i.e. dZ(ω) = Z(ω) − Z(ω−), E(dZ(ω)dZ(ω′)) = δω,ω′ (see

e.g. Brillinger (1975, Section 4.6.)). The quantity f(ω) = |A(ω)|2 is called

the spectrum, or spectral density function and quantifies the contribution to

variance given by frequency ω. Xt can be thought of as a linear combination

of Fourier sinusoids oscillating at different frequencies.

Different realisations of the process involve the same deterministic function

A(ω), but different realisations of the random process {Z(ω)}. The Cramér

representation can be compared to the representation in equation (2.1) for

deterministic series. The major difference between the two is that in equation

(2.28), for each frequency, ω, dZ(ω) is a random quantity and the integral is

a stochastic integral. The representation is therefore understood in a mean

square sense.

The autocovariance function of Xt has a Fourier representation in terms of
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the spectrum, given by

cX(τ) =

∫ π

−π
f(ω) exp(iωτ)dω. (2.29)

This relationship is invertible, with the Fourier transform of the covariance

function giving the spectrum.

2.3.1 Bivariate methods

Often we are interested not in the individual characteristics of a single time

series but in the dependence between two time series. Given two stationary,

zero mean, time series, {X(1)
t } and {X(2)

t }, their cross-covariance is given by

c
(1,2)
X (τ) = E(X

(1)
t X

(2)
t+τ ). The cross covariance function has a Fourier represen-

tation in terms of the cross-spectral density function, f (1,2)(ω):

c
(1,2)
X (τ) =

∫ π

−π
f (1,2)(ω) exp(iωτ)dω. (2.30)

The cross-covariance function provides a natural estimate of the relationship

between the two series in the time domain, while the cross-spectral density

function can be used similarly in the spectral domain (Brillinger, 1975). Simi-

larly to the univariate case, the relationship between the cross-covariance and

cross-spectrum is invertible, with the cross spectrum defined as the Fourier

transform of the cross-covariance.

The cross correlation function is derived by normalising the cross-covariance

by the individual variances of the two processes. The cross-correlation func-

tion lies in the range [−1,+1] with a value of zero indicating a complete lack

of correlation between the two series at time delay τ . The cross-correlation

typically depends on the parameters of the processes X(1) and X(2).

Similarly, the coherence function is derived by normalising the cross-spectrum

by the individual spectra and, roughly speaking, measures the correlation be-
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tween the signals as a function of frequency.

K(ω) =
|f (1,2)(ω)|2√
f (1)(ω)f (2)(ω)

. (2.31)

In practice, the squared coherence function, K(ω)2 is often used. By the

Cauchy-Schwarz inequality, the function satisfies 0 ≤ K(ω)2 ≤ 1 for −π ≤

ω ≤ π (Brockwell and Davis, 2006, Section 11.6). A coherence of K(ω) = 0

indicates that the signals are uncorrelated at frequency ω and a value near 1

indicates a strong linear relationship. Unlike the cross-correlation, the coher-

ence does not depend on the parameters of the serial autocorrelation within

each process. This can be demonstrated by re-writing equation (2.31) as

K12(ω) = E(dZ1(ω)dZ2(ω)) where Z(ω) is the orthonormal increment process

in equation (2.28) (see Brockwell and Davis (2006, Section 11.6)). It effectively

measures the correlation between the orthonormal increments corresponding

to the frequency components of X(1) and X(2), and thus provides different in-

formation about the dependence between the processes than that provided by

the cross-correlation function.

As well as the coherency, the cross spectrum can be used to derive several

other quantities which are useful in interpreting the cross spectrum. The cross-

spectrum is a complex quantity and so can be written in the form

f (1,2)(ω) = c(ω)− iq(ω), (2.32)

where the real-valued term, c(ω), is called the co-spectrum and the imaginary

term, q(ω), is called the quadrature spectrum. Alternatively, the cross spectrum

can be written in the form

f (1,2)(ω) = α(1,2)(ω)eiφ
(1,2)(ω), (2.33)

where α(1,2) and φ(1,2)(ω) are the cross-amplitude spectrum and the phase spec-
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trum, given by:

α(1,2) =
√
c(ω)2 + q(ω)2, φ(1,2)(ω) = tan−1

(−q(ω)

c(ω)

)
. (2.34)

2.3.2 Spectral analysis

As highlighted by the previous sections, the spectral density can provide a

useful description of the properties of a time series. In later chapters we will

be interested in estimating the spectrum and cross-spectrum of nonstationary

processes using wavelets. It is therefore useful to have an understanding of the

corresponding Fourier methods for the spectral estimation of stationary series.

The spectrum is commonly estimated by first estimating a quantity known as

the periodogram, which can be described as the ‘sample spectral density’ of the

series (Shumway and Stoffer, 2000). The periodogram is based on the discrete

Fourier transform of the series which we now introduce.

Definition 2.3.1. Given a discrete, regularly spaced time series, {Xn}Nn=1, fol-

lowing Shumway and Stoffer (2000, Chapter 4), the discrete Fourier transform

(DFT) is given by

ξ(ωj) =
1√
N

N∑
n=1

Xne
−itωj , for j = 0, ..., N/2 .

where ωj = 2πj
N

are the Fourier frequencies of the series.

Definition 2.3.2. Given a discrete, regularly spaced time series, {Xn}Nn=1, the

periodogram is given by

IN(ωj) = |ξ(ωj)|2, for j = 0, ..., N/2,

where ωj = 2πj
N

and ξ(ωj) is the DFT of {Xn} at ωj.

Note that for a series sampled at unit time intervals, the highest frequency

that can be detected in the data (termed the Nyquist frequency) is at frequency
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ω = π. The lowest frequency that can be detected corresponds to completing

one full cycle in the time period. This lowest frequency is given by ω = 2π
N

(Chatfield, 2003, Chapter 6.). For series not sampled at unit time intervals, but

with constant sampling interval ∆t, the corresponding frequencies can be found

by replacing π in the previous equations by π
∆t

. Also note that, as illustrated

by the neuroscience experiment detailed in Section 4.2.2, it is common to work

in Hertz frequency f rather than with the angular frequency ω. Since ω = 2πf ,

the lowest and highest frequencies in hertz (for unit sampling) correspond to

f1 = 1
N

and fN/2 = 1
2
.

In the case of bivariate observations, the cross-spectrum can be estimated

from the cross-periodogram.

Definition 2.3.3. Given two discrete, regularly spaced, time series, {X(1)
n }Nn=1,

{X(2)
n }Nn=1 the cross-periodogram is given by

I
(1,2)
N (ωj) = ξ(1)(ωj)ξ(2)(ωj), for j = 0, ..., N/2 ,

where ξ(1)(ωj), ξ
(2)(ωj) are the DFTs of X(1) and X(2).

Though the periodogram and cross-periodogram are unbiased estimators

of the spectrum and cross-spectrum, the variance of the estimators does not

decrease as we increase the length of the time series. In order to provide

consistency, the estimators need to be smoothed in some way. Reviews of

linear smoothing techniques can be found in Brillinger (1975) or Shumway

and Stoffer (2000). In cases where the spectral density exhibits a large degree

of irregularity, these linear smoothing techniques are incapable of achieving the

optimal mean-square rate of convergence (Fryzlewicz et al., 2008). Nonlinear

smoothing techniques include Davies and Kovac (2004) and Fryzlewicz et al.

(2008).
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2.3.3 Allowing for nonstationarity

The assumption of stationarity is extremely restrictive and it is intuitive that

many observed time series will not be stationary. For example, we later con-

sider a problem from neuroscience in which recordings were made from two

areas of a rat’s brain. Since the rat’s behaviour, sensory environment and the

excitability and rhythmicity of its neuronal networks can vary over sub-second

timescales, it is likely that the resulting time series will also be non-stationary.

An extension to Fourier analysis, to allow for non-stationarity, is the win-

dowed, Gabor transform (Gabor, 1946) which estimates the spectrum over

time as well as frequency by applying the Fourier transform to a localised time

window that slides along the time axis; the data within each time window is

presumed stationary. The Gabor transform is given by

Ĝ(b, ω) =

∫
R
x(t) exp(−iωt)g(t− b)dt, (2.35)

where g(t) is the localising function. This approach is also commonly known

as the short time Fourier transform (STFT). One drawback to this approach

is that the window width is constant over all frequencies. Unless the window

width is chosen to be sufficiently small, the time localisation at high frequencies

is poor and it is possible to miss fine scale features. It is desirable for the time

window to change so that we use a larger window to observe more information

for lower frequencies, and a smaller window for more precise time resolution

at high frequencies.

Stemming from the Cramér representation in equation (2.28), there have

been several modifications that can be made to allow for non-stationarity.

Introduced by Priestley (1965), one possibility is to replace the amplitude

function, A(ω), with a time varying version, At(ω), leading to a class of non-

stationary processes termed oscillatory processes. In oscillatory form, the

Fourier transform of a process is concentrated about frequency ω0 and the

process then behaves like a sine wave with conventional frequency ω0, modu-
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lated by a smoothly varying amplitude function. Here smoothly varying means

that the Fourier transform is concentrated around zero (Priestley, 1988, Sec-

tion 6.3). This also leads to the definition of a time dependent evolutionary

spectrum, which describes the frequency content of the process over time.

Continuing with the concept of a time varying amplitude, Dahlhaus (1997)

introduces the class of locally stationary Fourier (LSF) processes. The process

Xt is modelled as a triangular stochastic array {Xt,T}T−1
t=0 such that

Xt =

∫ π

−π
A0
t,T (ω) exp(iωt)dZ(ω), (2.36)

and there exists a transfer function A : [0, 1]× R→ C which is continuous in

the first argument and 2π periodic in the second, such that

sup
t,ω
|A0

t,T (ω)− A(t/T, ω)| ≤ K

T
. (2.37)

The consideration of asymptotics is difficult in a nonstationary setting since

future observations may not contain any information on the structure of the

process at the present time. This problem is overcome in the LSF process for-

mulation of Dahlhaus (1997), due to the introduction of the important concept

of rescaled time, z = t/T ∈ (0, 1). By modelling the amplitudes as a function

of rescaled time, it means that as the length of the time series increases there is

more information about the local structure of A(u, ω), permitting asymptotic

estimation of the model structure.

Dahlhaus and Polonik (2002) introduce time varying empirical spectral pro-

cesses for locally stationary processes (see also Dahlhaus and Polonik (2006)

and Dahlhaus and Polonik (2009)). Van Bellegem and Dahlhaus (2006) discuss

fitting autoregressive models with time-varying parameters to locally station-

ary processes.

Ombao et al. (2002) propose a representation for non-stationary processes
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in terms of SLEX (Smooth Localized Complex Exponential) functions which

can be thought of as localised versions of the Fourier exponential functions.

Using the Auto-SLEX method (Ombao et al., 2001), the data is automatically

segmented into approximately stationary dyadic blocks, allowing estimation of

the time-varying spectra.

Nason et al (2000) introduce the class of locally stationary wavelet (LSW)

processes which also adopts the rescaled time principle but replaces the Fourier

exponentials with non-decimated wavelets. This forms the basis of our work

in Chapters 3 and 4 and will be detailed later.

Finally, we briefly mention empirical mode decomposition (EMD), an adap-

tive decomposition method suitable for non-stationary time series (Huang

et al., 1998). EMD is based on the local extrema of the signal and imposes

no assumptions on stationarity. The method differs from the other approaches

described in this section in that the basis functions are dependent on the data.

EMD is described in further detail in Section 5.6, where it is introduced as an

interesting comparison to wavelet lifting techniques.

2.3.4 The locally stationary wavelet model

The bivariate LSW process considered in this thesis is based on the univariate

case of Nason et al. (2000). In this section we recall the definition of a LSW

process as well as several related quantities. Firstly we describe non-decimated

wavelets, the building blocks of the LSW model.

Discrete wavelets and associated functions

Let {gk} and {hk} denote the high and low pass filters, satisfying the quadra-

ture mirror relation of equation (2.15). Following Nason et al. (2000), the

discrete wavelet vectors ψj = (ψj,0, ..., ψj,(Lj−1)), for scale j < 0, are obtained
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using the formulae

ψ−1,n = gn, for n = 0, ..., L−1 − 1,

ψj−1,n =
∑
k

hn−2kψjk, for n = 0, ..., Lj−1 − 1,

where Lj = (2−j − 1)(Nh − 1) + 1 is the length of support of the wavelet and

Nh is the number of non-zero elements of {hk}. The notation j = −1 denotes

the finest scale wavelet, j = −2 the next finest scale and so forth.

The quantity ψj,k is the kth element of the vector ψj. Also shifts of the

vector by τ for τ ∈ Z are denoted ψj,k(τ), where ψj,k(τ) = ψj,k−τ is the

(k− τ)th element of the vector ψj. Given the vectors ψj, the collection of non-

decimated wavelet vectors ψj,k(t), for t = 0, 1, ..., T −1 is found by shifting the

vectors, ψj to all integer locations k;

ψj,k(t) = ψj,k−t. (2.38)

Non-decimated wavelets are an overcomplete collection of shifted vectors; how-

ever this ensures that the resulting transformation is translation-invariant.

We also define, from Nason et al. (2000), the discrete autocorrelation

wavelets which are used in representing the autocovariance functions of LSW

processes. The autocorrelation wavelets Ψ(τ) are defined for j < 0, τ ∈ Z as

Ψj(τ) =
∑
k∈Z

ψj,kψj,k−τ . (2.39)

Although the summation here is given over k ∈ Z, the product ψj,kψj,k−τ is

zero outside the range k = max{0, τ} to Lj − 1 + min{0, τ}. The autocor-

relation wavelets are compactly supported on the interval [1 − Lj, ..., Lj − 1]

and symmetric about τ = 0 with Ψj(0) = 1 and
∑

τ Ψj(τ) = 0 for all j. The
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cross-scale autocorrelation wavelets are given by

Ψi,j(τ) =
∑
k

ψi,kψj,k−τ . (2.40)

We define from Nason et al. (2000) the autocorrelation wavelet inner prod-

uct matrix. As we see later, this is required in order to form unbiased estimates

of the evolutionary wavelet spectra. The J × J autocorrelation wavelet inner

product matrix AJ is defined by

AJ = (Ai,j)i,j=−1,...,−J , (2.41)

where

Ai,j =
∑
τ

Ψi(τ)Ψj(τ). (2.42)

Further properties of this quantity and its computation can be found in Eckley

and Nason (2005). Another useful property of the autocorrelation wavelets is

that
∑

j 2jΨj(τ) = δ0,τ , as shown in Fryzlewicz et al. (2003). This also leads

to the result
∑

j 2jAi,j = 1.

LSW Model specification

Definition 2.3.4. (Nason et al., 2000) The LSW process {Xt,T}t=0,...,T−1 for

T = 2J ≥ 1 is a triangular stochastic array with mean-square representation

Xt,T =
−1∑

j=−∞

∞∑
k=−∞

wj,k,T ψj,k−t ξj,k, (2.43)

where {ψk,t} are discrete, real valued, compactly supported, non-decimated

wavelet vectors with scale and location parameters j ∈ {−1,−2, ...} and k ∈ Z

respectively. {ξ(i)
j,k} are orthonormal identically distributed random variables

with mean zero and {wj,k,T} is a set of amplitudes. For each j < 0, we assume

there exists a Lipschitz continuous function Wj(z) for z ∈ (0, 1) which fulfils
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the following properties:

•
∑−1

j=−∞ |Wj(z)|2 <∞, uniformly in z ∈ (0, 1).

• The Lipschitz constants, Lj, are uniformly bounded in j and satisfy∑−1
j=−∞ 2−jLj <∞.

• There exists a sequence of constants Cj, such that for each T .

sup
k=0,...,T−1

|wj,k;T −Wj(k/T )| ≤ Cj/T, (2.44)

and {Cj} fulfills
∑−1

j=−∞Cj <∞.

The parameters wj,k,T can be thought of as time and scale dependent trans-

fer functions while the non-decimated wavelet vectors, ψj, can be thought of

as building blocks analogous to Fourier exponentials in a spectral domain rep-

resentation. LSW processes include all stationary processes with absolutely

summable autocovariance (Nason et al., 2000). In this case stationarity is char-

acterised by an evolutionary wavelet spectrum which is constant over time, so

that Sj(z) = Sj for all z ∈ (0, 1).

The evolutionary wavelet spectrum

The classical spectrum, f(w), can be used to quantify the contribution to the

variance in a stationary series over frequency, ω. Similarly, the evolutionary

wavelet spectrum (EWS) quantifies the contribution to variance within a LSW

process over scale, j, and rescaled time, z = k/T . It is defined as:

Sj(z) = |Wj(z)|2. (2.45)

A measure of local covariance may be associated with the EWS. The autoco-

variance function of an LSW process Xt,T at lag τ and rescaled time location

z is given by
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cT (z, τ) = E(XzT,T , XzT+τ,T ). (2.46)

Nason et al. (2000) show that cT tends asymptotically to a local autocovari-

ance, c(z, τ), defined as

c(z, τ) =
−1∑

j=−∞

Sj(z)Ψj(τ), (2.47)

for τ ∈ Z and z ∈ (0, 1). This produces a multiscale decomposition of the

dependence structure over time. Since Ψj(0) = 1, the localised variance is

given by c(z, 0) =
∑−1

j=−∞ Sj(z).

The relationship between the evolutionary wavelet spectrum and local au-

tocovariance is invertible, with the inversion formula given by

Sj(z) =
∑
l

A−1
j,l

∑
τ

c(z, τ)Ψl(τ). (2.48)

Estimation of the EWS

The basic estimator for the EWS is the set of squared wavelet coefficients,

termed the wavelet periodogram by analogy to the classical Fourier periodogram.

First we define the empirical wavelet coefficients.

Definition 2.3.5. (Nason et al., 2000) For the process Xt,T , constructed using

the wavelet system ψ, the empirical nondecimated wavelet coefficients are given

by

dj,t,T =
∑
s

Xs,Tψj,s−t. (2.49)

Definition 2.3.6. (Nason et al., 2000) The wavelet periodogram of Xt,T at

scale j is given by

Ij,t,T = |dj,t,T |2. (2.50)

Each wavelet periodogram ordinate is the squared wavelet coefficient of a

zero mean Gaussian time series. The wavelet periodogram therefore follows a
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scaled χ2 distribution with 1 degree of freedom.

Proposition 2.3.7. (Nason et al., 2000) The expectation of the wavelet peri-

odogram is given by

E(Ij,t,T ) =
−1∑

i=−∞

Si(t/T )Aij + 2−jO(T−1). (2.51)

Also, assuming Xt,T is Gaussian, then the variance is given by

V ar(Ij,t,T ) = 2
( −1∑
i=−∞

Si(t/T )Ai,j

)2

+ 2−jO(T−1). (2.52)

Equation (2.51) implies that the wavelet periodogram is a biased estimator

of the evolutionary wavelet spectrum. This bias is due to the redundancy in

the NDWT and causes the power to be spread across the scales. An unbiased

estimate of Sj(z) can be obtained by setting Ŝj(z) =
∑−1

=−J Ij,t,TA
−1
i,j .

From equation (2.52) we see that the wavelet periodogram has non-vanishing

variance and so needs to be smoothed to obtain consistency. Further details

of smoothing the wavelet periodogram are given in Nason et al. (2000). As-

sociated techniques include that of Fryzlewicz et al. (2008) who introduce a

new estimation method, based on the Haar-Fisz transform, for time series with

piecewise constant evolutionary wavelet spectra. Also Van Bellegem and von

Sachs (2008) introduce a locally adaptive estimation procedure for evolution-

ary wavelet spectra, allowing for processes whose spectral density functions

contain abrupt changes.
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Locally stationary wavelet

coherence

This chapter addresses the problem of estimating the dependence between

two non-stationary time series. The motivation for this stems from a prob-

lem in neuroscience where population local field potential (LFP) recordings

were made from two areas of a rat’s brain as it performed a maze-based task

designed to invoke spatial working memory and decision-making. Estimating

the time-varying dependence structure between these signals can provide di-

rect insight into the timing and fundamental nature of interactions between

brain regions (Varela et al., 2001). This chapter contains theoretical results

regarding the proposed dependence estimator, while Chapter 4 considers the

practical implementation, including application to the described neuroscience

problem.

As described in Section 2.3.1, if the series are stationary then the cross cor-

relation function provides a useful measure of dependence in the time domain,

while the coherence provides a useful measure of dependence between the series

in the Fourier domain. For nonstationary series, the short time Fourier trans-

form (Gabor, 1946) can be used to provide a localised measure of coherence,

however this method suffers from the same shortcomings as with the univari-

ate application; the time localisation is not ideal as the same window width is
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used at all frequencies, hence other methods are preferable for the representa-

tion of bivariate nonstationary signals. Dahlhaus (2000) introduces a method

for modelling multivariate processes based on the locally stationary process

model (Dahlhaus, 1997). Priestley and Tong (1973) provide an extension to

their univariate methodology (Priestley, 1965) to define the evolutionary cross

spectra and coherence, however this resulting coherence is not dependent on

time. Ombao and Van Bellegem (2008) introduce a coherence estimator based

on time localised linear filtering. The coherence is estimated within a local

time window which is automatically selected and adaptive in the sense that it

is permitted to change over time.

The SLEX approach can also be used in the bivariate setting to estimate the

time varying coherence (Ombao et al., 2001). As with wavelets, the SLEX basis

functions are localised in both time and frequency and so provide a natural

foundation for nonstationary signals. However, unlike the LSW model, the

SLEX model suffers from the constraint of dyadic segmentation and in the

bivariate SLEX setting it is necessary for each of the signals to follow the same

segmentation. The bivariate SLEX model does have the advantage that, due

to the complex nature of the basis functions, it is possible to estimate the phase

between the signals. In the bivariate LSW model introduced in this chapter

we do not incorporate phase estimation but the topic is discussed in further

detail in Section 3.5.

Due to the natural localisation in both time and scale, wavelets are a pop-

ular tool for modelling the dependence between two non-stationary series. Un-

like time resolved Fourier coherence, the wavelet transform uses shorter win-

dows for higher frequencies, which leads to more ‘natural’ localisation. The

concept of the wavelet cross spectrum, in terms of the continuous wavelet trans-

form, was introduced by Hudgins et al. (1993), and has since been applied to

fields including climatology (Maraun and Kurths (2004) and Grinsted et al.

(2004)) and neuroscience (Lachaux et al., 2002). Wavelet cross-covariance and

correlation has also been defined based on the maximal overlap discrete wavelet
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transform (MODWT) (see Whitcher et al. (2000) and Serroukh and Walden

(2001)). Their formulation assumes that the d’th order backwards differences

of the series can be modelled as a stationary process. A similar concept to

that of cross-wavelet analysis is that of Hilbert wavelet pairs (Whitcher et al.,

2005). Using this approach, the coherence and phase between the signals can

be estimated with less redundancy than with the CWT.

In this chapter we propose a novel measure of wavelet coherence termed

locally stationary wavelet coherence. This is derived from the locally sta-

tionary wavelet time series model of Nason et al. (2000). Following the work

of Dahlhaus (1997), the model adopts the rescaled time principle, replacing

the exponentials in the Fourier representation by a system of non decimated

wavelets. An important difference between the locally stationary wavelet

model and previous wavelet coherence measures lies in the particular bias

correction implied by the locally stationary wavelet model. The locally sta-

tionary wavelet coherence provides a measure of the dependence between the

innovations of each process, and is therefore uncontaminated by within-process

dependence of each series. Furthermore, our formulation provides a model that

is theoretically tractable and which can be estimated efficiently by means of

the nondecimated wavelet transform.

3.1 The bivariate LSW time series model

We begin by defining the joint locally stationary wavelet (LSW) process model.

Assuming that both series can be modelled as LSW processes, the model is

defined as follows.

Definition 3.1.1. The joint LSW process (X
(1)
t,T , X

(2)
t,T )t=0,...,T−1 is a triangular

stochastic array with representation
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X
(1)
t,T =

−1∑
j=−∞

∞∑
k=−∞

W
(1)
j (k/T )ψj,t−kξ

(1)
j,k ,

X
(2)
t,T =

−1∑
j=−∞

∞∑
k=−∞

W
(2)
j (k/T )ψj,t−kξ

(2)
j,k ,

where {ψj,k} are discrete, real valued, compactly supported, non-decimated

wavelet vectors with scale index and location parameters j ∈ {−1,−2, ...} and

k ∈ Z, respectively. For each j ≤ −1, the functions W
(i)
j (k/T ) are assumed to

be Lipschitz continuous with Lipschitz constants, Lj, uniformly bounded in j

and satisfying
∑−1

j=−∞ 2−jLj <∞. The functions are defined on rescaled time

z = k/T for k = 0, ..., T − 1. Also, ξ
(i)
j,k are zero mean orthonormal identically

distributed random variables with the following properties

• cov(ξ
(i)
j,k, ξ

(i)
j′,k′) = δj,j′δk,k′ ,

• cov(ξ
(1)
j,k , ξ

(2)
j′,k′) = δj,j′δk,k′ρj(k/T ),

where δi,j is the Kronecker delta function, giving δi,j = 1 for i = j and 0

otherwise. The functions ρj(k/T ) are also assumed to be Lipschitz continuous

with Lipschitz constants, Rj, satisfying
∑−1

j=−∞ 2−jRj <∞.

Note that the LSW formulation presented in this chapter is a simplification

of the model given in definition 2.3.4, replacing the more general amplitudes,

wj,k,T , with W
(i)
j (k/T ). For the class of locally stationary Fourier processes

(Dahlhaus, 1997) the general transfer function is required to ensure that the

class includes time-varying AR models. In the LSW formulation the bene-

fits of allowing a general transfer function are not clear and so we adopt the

simplified formulation. As in the univariate case, the parameters W
(i)
j (k/T )

can be thought of as scale-dependent transfer functions of rescaled time and

the non-decimated wavelet vectors, ψj, can be thought of as building blocks

analogous to Fourier exponentials in the spectral domain representation. The
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notation j = −1 denotes the finest scale wavelet, j = −2 the next finest

scale and so forth. Throughout the thesis we assume that the errors are nor-

mally distributed. In principle other distributions could be used, however

this assumption is made to ensure theoretical tractability. The formulation

in Definition 3.1.1 parallels the univariate case of Nason et al (2000), but in

extending this to the bivariate setting we must allow for a potential correla-

tion structure between the two series, given by ρj(k/T ). The scale dependent

quantity ρj(k/T ) is a direct measure of the dependence between the innova-

tion sequences of each process at scale j. Therefore, unlike other measures of

dependence such as the cross-correlation function, ρj(k/T ) does not depend

on the other parameters of the model. This dependence measure is our main

quantity of interest within the model. It is analogous to the classical coher-

ence, K(ω), in spectral domain setting and quantifies the dependence between

the series over scale and time. Though in principle other distributions could be

used, throughout this thesis we assume that the innovations, ξ
(i)
j,k, are normally

distributed, ensuring theoretical tractability.

The LSW coherence, ρj(k/T ), together with the evolutionary wavelet spec-

tra, S(i)(z) = W (i)(z)2 for i = 1, 2, provides a description of the joint process.

This can be demonstrated by means of a brief example. Suppose that for both

series the spectrum is zero at all scales apart from j = −2. At this scale,

both spectra are constant at S
(1)
−2(z) = S

(2)
−2(z) = 5. The processes are assumed

to have zero coherence at all scales apart from j = −2, and at this scale the

LSW coherence is 0 for the first third of the series, then increases linearly to

1 throughout the second third of the series, then remains at 1 for the last seg-

ment of data. The EWS and coherence are plotted in Figure 3.1, along with

one simulation of time series with these properties. The resulting series are

independent until time T/3, exactly the same for the latter half of the series

(since the coherence is specified to be 1 at the only non-zero scale) and for the

middle section of the data, the series show a transition from independence to

complete dependence.
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Figure 3.1: Example of the construction of a bivariate LSW process. a) EWS
of X(1) and X(2) b) LSW coherence between the series, c) simulation of X(1)

(black) and X(2) (red).
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3.2 The evolutionary wavelet cross-spectrum

and coherence

The evolutionary wavelet cross-spectrum provides a measure of the dependence

between two time series. It is analogous to the EWS in the univariate setting

and provides a natural stage in estimating the LSW coherence.

Definition 3.2.1. The evolutionary wavelet cross-spectrum of the LSW pro-

cesses X
(1)
t,T and X

(2)
t,T , is given by

Cj(z) = W
(1)
j (z)W

(2)
j (z)ρj(z), for j ∈ {−1,−2, ...}, z ∈ [0, 1]

A measure of local cross-covariance, introduced in Definition 3.2.2, may

be associated with the evolutionary wavelet cross-spectrum. As shown by

Proposition 3.2.3, the LSW process cross-covariance given by c
(1,2)
T (z, τ) =

cov(X
(1)
zT,T , X

(2)
zT+τ,T ), asymptotically tends to the local cross-covariance.

Definition 3.2.2. The local cross-covariance of the LSW processes X
(1)
t,T and

X
(2)
t,T at lag τ ∈ Z, is given by

c(1,2)(z, τ) =
−1∑

j=−∞

Cj(z)Ψj(τ), (3.1)

where Ψj(τ) =
∑

k ψj,kψj,k−τ is the autocorrelation wavelet.

Proposition 3.2.3. Assuming there exists a constant, C, such that for all j ∈

{−1,−2, ...}, |W (i)
j (z)| ≤ C2j/2. Then for τ ∈ Z and z ∈ (0, 1), |c(1,2)

T (z, τ) −

c(1,2)(z, τ)| = O(T−1).

The assumption of Proposition 3.2.3 is satisfied if, for example, Xt,T is a

white noise process. Before verifying this proposition, we first introduce the

following lemma which provides a useful result of the properties of products

of Lipschitz continuous variables.
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Lemma 3.2.4. The Lipschitz property of W
(i)
j (k/T ) stated in Definition 3.1.1

implies that |W (i)
j (k/T ) − W

(i)
j (t/T )| ≤ T−1(Lj|k − t|) for some Lipschitz

constant Lj, and similarly |ρj(k/T ) − ρj(k/T )| ≤ T−1(Rj|k − t|). Further-

more, assume that there exists a positive constant, C, such that for all j,

|Wj(z)| ≤ C2j/2. Then by the property of products of Lipschitz continuous

variables, denoting Bi = max(Li, Ri), we have

|W (1)
i (k/T )W

(2)
i (k/T )ρi(k/T )−W (1)

i (t/T )W
(2)
i (t/T )ρi(t/T )| ≤ T−1CBi|k− t|.

Using this result, we are now able to prove Proposition 3.2.3, on the con-

vergence of the process cross-covariance.

Proof of Proposition 3.2.3.

c
(1,2)
T (z, τ) = cov(X

(1)
t,T , X

(2)
t+τ,T ),

= E
( −1∑
j=−∞

∞∑
k=−∞

W
(1)
j (k/T )ψj,t−kξ

(1)
j,k

−1∑
j=−∞

∞∑
k=−∞

W
(2)
j (k/T )ψj,t+τ−kξ

(2)
j,k

)
,

=
−1∑

j=−∞

∞∑
k=−∞

Cj(k/T )ψj,t−kψj,t+τ−k.

Using the result from Lemma 3.2.4 we obtain

|c(1,2)
T (z, τ)− c(1,2)(z, τ)| = |

−1∑
j=−∞

∞∑
k=−∞

Cj(k/T )ψj,t−kψj,t+τ−k −
−1∑

j=−∞

Cj(t/T )Ψj(τ)|,

≤ |T−1

−1∑
j=−∞

∞∑
k=−∞

CBj|k − t|ψj,t−kψj,t+τ−k |,

= O(T−1).

Note also that the support of Ψj(τ) is bounded by K2−j, and so the distance

|k − t| is bounded by this amount also. The Lipschitz constants Bj are uni-
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3.2. The evolutionary wavelet cross-spectrum and coherence

formly bounded in j with
∑

j Bj2
−j < ∞ (as stated in Definition 3.1.1) and

Ψj(τ) = O(1).

The evolutionary wavelet cross-spectrum describes the contribution to the

cross-covariance at a particular rescaled time, z, and scale, j. This interpre-

tation becomes clear when considering the cross-covariance at zero lag. Since

Ψj(0) = 1, substituting into equation (3.1) gives c(1,2)(z, 0) =
∑−1

j=−∞Cj(z).

As the function Ψj(τ) is symmetric, this implies c(1,2)(z, τ) = c(1,2)(z,−τ) and

so the model only permits symmetric cross-covariances. The cross-covariance

is maximised at τ = 0 and so it is required that the two series are aligned

so that there is no time delay between the signals. Note that the analysis of

bivariate signals containing a time delay is considered in Chapter 6, using a

wavelet lifting framework.

The relationship between the LSW cross-spectrum and the local cross-

covariance is invertible, with the inverse relationship given by

Cj(z) =
∑
l

A−1
j,l

∑
τ

c(1,2)(z, τ)Ψl(τ), (3.2)

where Ai,j is the autocorrelation wavelet inner product matrix.

The LSW cross-spectrum, Cj(z), provides a measure of the dependence

between the two series. However it is clear that deviations in Cj(z) can be

caused by fluctuations in the EWS of each of the processes as well as by

changes in the dependence, and hence the wavelet cross-spectrum cannot be

used alone as a measure of dependence between the series.

The LSW coherence, ρj(z), can be represented in terms of the evolutionary

wavelet cross-spectrum and the individual EWS of each process as shown in

equation (3.3), providing a normalised measure of the relationship between

two series
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Chapter 3. Locally stationary wavelet coherence

ρj(z) =
Cj(z)√

S
(1)
j (z)S

(2)
j (z)

. (3.3)

In particular, the model permits a stationary or non-stationary coherence

at each scale, ρj(z), independently of the stationarity of the individual wavelet

spectra S
(i)
j (z) or the wavelet cross spectrum Cj(z). The locally stationary

wavelet coherence ranges from −1, indicating complete negative correlation at

scale j and rescaled time z, to +1 indicating complete correlation. A value of

close to zero indicates a lack of correlation between the two series at the given

scale and location. In the case where one of the spectra is zero, the coherence

is undefined.

3.3 Estimation

The basic pre-estimator of the EWS is a quantity known as the wavelet peri-

odogram (see Section 2.3.4). Similarly, the wavelet cross-spectrum is estimated

from the wavelet cross-periodogram. Following Nason et al. (2000), the empir-

ical nondecimated wavelet coefficients for the LSW process X
(i)
t,T , constructed

using the wavelet system ψ, are given by d
(i)
j,t,T =

∑
sX

(i)
s,Tψj,s−t. The non

decimated wavelet coefficients are used to construct the cross periodogram:

Definition 3.3.1. The wavelet cross-periodogram for the LSW processesX
(1)
t,T , X

(2)
t,T ,

is given by I
(1,2)
j,t,T = d

(1)
j,t,Td

(2)
j,t,T .

Proposition 3.3.2. Assume there exists a constant, C, such that for all j ∈

{−1,−2, ...}, |W (i)
j (z)| ≤ C2j/2. The expectation of the cross-periodogram,

I
(1,2)
j,t,T , is given by

E(I
(1,2)
j,t,T ) =

−1∑
i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Ai,j + 2−jO(T−1).
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3.3. Estimation

Also, the variance is given by

Var(I
(1,2)
j,t,T ) =

−1∑
i=−∞

S
(1)
i (t/T )Ai,j

−1∑
i=−∞

S
(2)
i (t/T )Ai,j

+
( −1∑
i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Ai,j

)2

+ 2−jO(T−1).

Proof of Proposition 3.3.2. The expectation of the evolutionary wavelet cross-

periodogram is given by

E(I
(1,2)
j,t,T ) = E

[∑
s

−1∑
i=−∞

∞∑
k=∞

W
(1)
i (k/T )ψi,s−kξ

(1)
i,k ψj,s−t

∑
s

−1∑
i=−∞

∞∑
k=−∞

W
(2)
i (k/T )ψi,s−kξ

(2)
i,k ψj,s−t

]
,

= E
[ −1∑
i=−∞

∞∑
k=∞

W
(1)
i (k/T )Ψi,j(k − t)ξ(1)

i,k

−1∑
i=−∞

∞∑
k=−∞

W
(2)
i (k/T )Ψi,j(k − t)ξ(2)

i,k

]
,

=
−1∑

i=−∞

∞∑
k=∞

W
(1)
i (k/T )W

(2)
i (k/T )ρi(k/T )Ψ2

i,j(k − t),

=
−1∑

i=−∞
W

(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Ai,j +RestT ,

since cov(ξ
(1)
j,k , ξ

(2)
j′,k′) = δj,j′δk,k′ρj(k/T ). The remainder can be found using

the result from Lemma 3.2.4, and that the length of support of Ψ2
i,j(k − t) is

bounded by K(2−i + 2−j), to be

RestT ≤ T−1
−1∑

i=−∞
CKBi(2

−i + 2−j)

∞∑
k=−∞

Ψ2
i,j(k − t),

≤ T−12−jCK

−1∑
i=−∞

Bi2
−i

−1∑
k=−∞

2kAi,k + T−12−jCK

−1∑
i=−∞

Bi2
−i

−1∑
k=−∞

2kAk,j ,

= 2−jO(T−1).

Note also that
∑−1

k=−∞ 2kAi,k = 1 for all i (Fryzlewicz et al., 2003) and the

Lipschitz constants Bi are uniformly bounded in i with
∑

iBi2
−i ≤ ∞. For

the variance, we decompose the product using Isserlis’s Theorem for zero mean
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Gaussian random variables (Isserlis, 1918) to give

Var(I
(1,2)
j,k,T ) = E(I

(1)
j,t,T )E(I

(2)
j,t,T ) + E(I

(1,2)
j,t,T )2,

which on substitution of the relevant terms provides the stated result.

We can see from Proposition 3.3.2 that the expectation of the wavelet

cross-periodogram is composed of the sum of wavelet cross-spectra, Cj(z).

The wavelet cross-periodogram is therefore a natural estimator of the wavelet

cross-spectrum, but we first need to correct for the bias incurred by the matrix

AJ . Also, since the wavelet cross-periodogram has non-vanishing variance, it

needs to be smoothed to obtain consistency. For this we use simple moving av-

erage smoothing. Other more advanced smoothing techniques such as wavelet

shrinkage may also be viable.

The estimator of the wavelet cross-spectrum is therefore constructed by

bias-correcting the periodogram to give

Ĩl(t/T ) =
−1∑

j=−J∗
I

(1,2)
j,t,T A

−1
l,j . (3.4)

Then smoothing over a window of ±M in time to give

Ĉl(t/T ) =
1

2M + 1

M∑
m=−M

Ĩ
(1,2)
l,t+m,T . (3.5)

The maximum number of estimable scales, J∗, is determined by the length of

the series. As shown in the proof of Proposition 3.3.4 below, it is necessary

to choose J∗ < log2(T ) to ensure the consistency of Ĩl(z). The choice of J∗

is discussed in more detail in Section 4.1.2. These correction and smoothing

steps can be performed in any order.

In order to find the expectation and MSE of the estimator Ĉl(z), we first

provide the intermediate result for the smoothed cross-periodogram.
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3.3. Estimation

Proposition 3.3.3. The expectation of the smoothed cross-periodogram is

given by

E(Ĩ
(1,2)
j,t,T ) =

−1∑
i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Ai,j + (2−j +M)O(T−1),

and the mean squared error is

MSE(Ĩ
(1,2)
j,t,T ) = 2−2jM−1O(1).

Proof of Proposition 3.3.3.

E(Ĩ
(1,2)
j,t,T ) =

1

2M + 1

M∑
m=−M

E(I
(1,2)
j,t+m,T ),

=
1

2M + 1

M∑
m=−M

−1∑
i=−∞

W
(1)
i

( t+m

T

)
W

(2)
i

( t+m

T

)
ρi

( t+m

T

)
Ai,j + 2−jO(T−1),

=
−1∑

i=−∞
W

(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Ai,j +RestT .

Using Lemma 3.2.4, the remainder can be found as

RestT ≤ 1

2M + 1

M∑
m=−M

−1∑
i=−∞

T−1Bi|m|Ai,j + 2−jO(T−1),

≤ 1

(2M + 1)T

M∑
m=−M

|m|
−1∑

i=−∞
Bi2

−i
−1∑

k=−∞
2kAk,j + 2−jO(T−1),

=
M(M + 1)

(2M + 1)T

−1∑
i=−∞

Bi2
−i

−1∑
k=−∞

2kAk,j + 2−jO(T−1),

= MO(T−1) + 2−jO(T−1),

= (M + 2−j)O(T−1).

The variance of the smoothed cross-periodogram is given by

V ar(Ĩ
(1,2)
j,t,T ) =

1

(2M + 1)2

M∑
m=−M

M∑
m′=−M

Cov
(
I

(1,2)
j,t+m,T , I

(1,2)
j,t+m′,T

)
,

=
1

(2M + 1)2

M∑
m=−M

∑
τ

Cov
(
I

(1,2)
j,t+m,T , I

(1,2)
j,t+m+τ,T

)
,
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Chapter 3. Locally stationary wavelet coherence

where τ = m′ − m. Decomposing the covariance using Isserlis’s Theorem

leads to the following expression, in terms of the periodogram ordinates of

each process:

Cov
(
I

(1,2)
j,t+m,T , I

(1,2)
j,t+m+τ,T

)
= E

(
d

(1)
j,t+m,T , d

(1)
j,t+m+τ,T

)
E
(
d

(2)
j,t+m,T , d

(2)
j,t+m+τ,T

)
,

+ E
(
d

(1)
j,t+m,T , d

(2)
j,t+m+τ,T

)
E
(
d

(2)
j,t,T , d

(1)
j,t+m+τ,T

)
.

Here the first product is of the autocovariances of the wavelet periodogram

ordinates and the last product consists of the cross-covariances, both for a

fixed scale, j. These expectations can be shown using similar techniques as in

proof of Proposition 3.3.2 to take the values:

E(dj,t,T , dj,t+m+τ,T ) =
−1∑

i=−∞
Si(t/T )Aτi,j + (|m|+ 2−j)O(T−1),

E(d
(1)
j,t,T , d

(2)
j,t+m+τ,T ) =

−1∑
i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Aτi,j + (|m|+ 2−j)O(T−1),

Where Aτi,j is a lagged version of the nondecimated wavelet inner product

matrix, given by Aτi,j =
∑

n Ψi,j(n)Ψi,j(n+ τ). Substituting the relevant terms

and summing over m, the variance is given by

Var(Ĩ
(1,2)
j,t,T ) =

1

(2M + 1)2

M∑
m=−M

∑
τ

[ −1∑
i=−∞

S
(1)
i

( t
T

)
Aτi,j

−1∑
i=−∞

S
(2)
i

( t
T

)
Aτi,j ,

+
( −1∑
i=−∞

W
(1)
i

( t
T

)
W

(2)
i

( t
T

)
ρi

( t
T

)
Aτi,j

)2
+ (2−j + |m|)O(T−1)

]
,

=
1

(2M + 1)2

M∑
m=−M

[
I + II + (2−j + |m|)O(T−1)

]
.

To find a bound for the variance we look at these terms separately. The first

term can be bounded by
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I ≤
∑
τ

|
−1∑

i=−∞
S

(1)
i

( t
T

)
Aτi,j |

∑
τ

|
−1∑

i=−∞
S

(2)
i

( t
T

)
Aτi,j |,

=
∑
τ

|
−1∑

i=−∞
S

(1)
i (t/T )

∑
n

Ψi(n)Ψj(n+ τ)|
∑
τ

|
−1∑

i=−∞
S

(2)
i (t/T )

∑
n

Ψi(n)Ψj(n+ τ)|,

≤
∑
n

|c(1)(t, n)|
∑
τ

|Ψj(n+ τ)|.
∑
n

|c(2)(t, n)|
∑
τ

|Ψj(n+ τ)|,

= 2−2jO(1),

assuming supz∈[0,1]

∑
τ |c(z, τ)| < ∞, and using that

∑
τ |Ψj(τ)| = 2−jO(1)

(Nason et al., 2000, Proof of Proposition 3). A bound for the second term can

be found in a similar fashion, but replacing the autospectrum of each process

with the cross spectrum. This provide the result II ≤ 2−2jO(1). Hence the

variance is of order

Var(Ĩ
(j)
t,T ) =

1

(2M + 1)2

M∑
m=−M

[
2−2jO(1) + 2−2jO(1) + (2−j + |m|)O(T−1)

]
,

= M−12−2jO(1) + 2−jO(T−1),

= M−12−2jO(1),

and the mean squared error is given by

MSE(Ĩ
(1,2)
j,t,T ) = 2−2jM−1O(1) + ((2−j +M)O(T−1))2 = 2−2jM−1O(1).

Using this result, we are now in the position to prove the consistency of

our estimator, Ĉl(z).

Proposition 3.3.4. Suppose that the assumptions from Proposition 1 and 2

hold, and let J∗ = α log2(T ) where α ∈ (0, 1). Then for Haar and Shannon

wavelets the estimator Ĉl(t/T ) converges in probability to W
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T )

for each fixed scale l, provided that M−1Tα → 0 as T →∞ and M →∞.
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Proof of Proposition 3.3.4.

EĈl(t/T ) =
−1∑

j=−J∗
EĨ(1,2)

j,t,T A
−1
l,j ,

= W
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T ) +RestT ,

as the residual is given by

RestT ≤
−1∑

j=−J∗

(M + 2−j)O(T−1)A−1
l,j ,

= MO(T−1)
−1∑

j=−J∗

A−1
l,j +O(T−1)

−1∑
j=−J∗

2−jA−1
l,j = MO(T−1),

since A−1
l,j is bounded and

∑−1
j=−J∗ 2−jA−1

l,j < ∞. For the mean squared error,

we use a similar result to that of Fryzlewicz and Nason (2006, Theorem 4.1).

The mean squared error can be written in the form

MSE(Ĉl(t/T )) = E(Ĉl(t/T )−W (1)
l (t/T )W

(2)
l (t/T )ρl(t/T ))2,

= E(
−1∑

j=−J∗

Ĩ
(1,2)
j,t,T A

−1
l,j −

−1∑
j=−∞

βj(t/T )A−1
l,j )2,

where βj(z) =
∑−1

i=−∞W
(1)
i (z)W

(2)
i (z)ρi(z)Ai,j. Splitting this into two terms

gives

MSE(Ĉl(t/T )) ≤ 2E
( −1∑
j=−J∗

(Ĩ
(1,2)
j,t,T − βj(t/T ))A−1

l,j

)2

+ 2
( −J∗−1∑
j=−∞

βj(t/T )A−1
l,j

)2

,

= I + II.

From Theorem 2 of Nason et al. (2000), we have that for Haar wavelets A−1
l,j ≤

C2l/22j/2. Using this result we find
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I ≤ 2
−1∑
j=J∗

E(Ĩ
(1,2)
j,t,T − βj(t/T ))2(A−1

l,j )2

≤ 2
−1∑

j=−J∗
C2l2j2−2jM−1O(1),

= M−1O(1)
∑
j=−J∗

2−j,

= M−1O(Tα)

as E(Ĩ
(1,2)
t,T − βj(t/T ))2 is the MSE of the smoothed cross-periodogram, given

by MSE(Ĩ
(1,2)
j,t,T ) = 2−2jM−1O(1). To consider the case of wavelets other than

Haar, we first consider the case of Shannon wavelets. For the Shannon wavelet

we have A−1
l,j ≤ 2j which results in a bound of M−1O(1) ≤ M−1O(Tα). The

bound is therefore valid for Shannon’s wavelet as well as Haar, and so we con-

jecture that the proof is valid for all other Daubechies compactly supported

wavelets.

For the second term we further assume βj(t/T ) < C1 (as in Fryzlewicz and

Nason (2006)), to give

II ≤ 2
( −J∗−1∑
j=−∞

C12l/22j/2
)2

≤ 2.2l
( −J∗−1∑
j=−∞

C12j/2
)2

= 2lO(1).

Combining these results gives MSE(Ĉl(t/T )) = M−1O(Tα). The estimator

Ĉl(t/T ), then converges in probability to W
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T ) provided

that MTα → 0 as T →∞ and M →∞ for each fixed scale l.

The wavelet periodograms, I
(i)
j,t,T for i = 1, 2 are smoothed and corrected

in the same manner to give Ŝ1
l (t/T ) and Ŝ2

l (t/T ), and a similar result holds.

From Proposition 3.3.4, we see that as M increases, our estimators of the cross

and auto spectra converge in probability to the expected quantities.
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Given estimates of the wavelet cross-spectrum, Ĉl(t/T ), and EWS, Ŝ
(i)
l (t/T ),

of each process and provided that S
(1)
l (t/T ) > 0 and S

(2)
l (t/T ) > 0, the esti-

mator of the locally stationary wavelet coherence given by

ρ̂l(t/T ) =
Ĉl(t/T )

(Ŝ
(1)
l (t/T )Ŝ

(2)
l (t/T ))1/2

, (3.6)

converges in probability to ρl(t/T ) by Slutsky’s theorem (Slutsky, 1925).

3.4 Relationship between the LSW and Fourier

coherence

In order to assess the performance of the LSW coherence estimator, it is inter-

esting to compare this method with existing methods for quantifying depen-

dence between two time series. This section considers the link between LSW

coherence and classical Fourier coherence.

To understand the relationship between the Fourier and LSW coherence

measures, we express both quantities in terms of the covariance function. Us-

ing the definition of the LSW cross-spectra from equation (3.3), and the cor-

responding representation of the wavelet auto-spectra, results in the following

expression for the LSW coherence:

ρj(z) =

∑
τ c

(1,2)(z, τ)
∑

lA
−1
jl Ψl(τ)√∑

τ c
(1)(z, τ)

∑
lA
−1
jl Ψl(τ)

∑
τ c

(2)(z, τ)
∑

lA
−1
jl Ψl(τ)

. (3.7)

The equivalent representation for the Fourier coherence is:

K(ω) =
|
∑

τ c
(1,2)
X (τ)e−iωτ |√∑

τ c
(1)
X (τ)cos(ωτ)

√∑
τ c

(2)
X (τ)cos(ωτ)

. (3.8)
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Figure 3.2: Autocorrelation wavelets and corrected autocorrelation wavelets
for Haar (panels a and c) and Daubechies least asymmetric N = 6 (panels b
and d).
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Chapter 3. Locally stationary wavelet coherence

Since in the LSW setting we have a measure of the localised covariance,

the LSW coherence is defined over rescaled time, z = k/T , giving a localised

measure of the coherence. In the case where the series is stationary, there is no

dependence on z in equation (3.7) and the two representations become more

comparable.

Comparing equations (3.7) and (3.8) in the stationary setting, we see that

the functions
∑

lA
−1
jl Ψl(τ) in the LSW representation perform the same task

as the Fourier exponentials in equation (3.8). These functions are a modified

version of the autocorrelation wavelets, Ψj(τ), and unlike the Fourier expo-

nentials which have a constant amplitude over the the entire length of T , the

amplitude of these functions decay as |τ | → ∞. The rate of decay depends

on the scale, j, with the functions decaying at a much faster rate for fine

scales. The autocorrelation wavelets and the corrected quantity
∑

lA
−1
jl Ψl(τ)

are plotted in Figure 3.2 for two choices of wavelet.

The following result from von Sachs et al. (1997) provides a useful relation

between the wavelet periodogram and the classical Fourier spectrum.

Theorem 3.4.1 (von Sachs et al. (1997)). If Xt,T is second order stationary,

with spectral density f(ω), then

lim
T→∞

E(Ij,k,T ) =

∫ π

−π
f(ω)Ψ̂j(ω)dω,

where Ψ̂j(ω) = |ψ̂j,k(ω)|2 and

ψ̂j,k(ω) =
∞∑

s=−∞

ψj,k(s)e
iωs.

The quantity ψ̂j,k(ω) is not independent of k but is a phase shifted version

of ψ̂j0(ω). However taking absolute values cancels the phase shift, and hence

the expectation in Theorem 3.4.1 is independent of k. Ψ̂j(ω) can be thought

of as the (squared) Fourier domain expression of the inverse DWT operator.
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3.4. Relationship between the LSW and Fourier coherence

For the Shannon wavelet, Nason et al. (2000) derive

Ψ̂j(ω) = 2−jχCj
(ω), (3.9)

where χA(ω) is the indicator function of the set A and

Cj =
[
− π

2−j−1
,− π

2−j

]
∪
[ π

2−j
,

π

2−j−1

]
. (3.10)

Using Theorem 3.4.1, equation (3.9) and assuming that ω > 0, the ex-

pectation of the wavelet periodogram of a stationary process using Shannon

wavelets, can be expressed in terms of the Fourier spectrum as

E(Ijk,T ) =

∫ π

−π
f(ω)2−jχCj

dω = 2−j
∫ π/2−j−1

π/2−j

f(ω)dω. (3.11)

For the Shannon wavelet, Aj,l=0 for j 6= l since the supports of different

Ψ̂j(ω) do not overlap, and Aj,j = 2−j for j < 0 (Nason et al., 2000). Therefore

the expectation of the corrected periodogram is given by

E(
∑
l

A−1
jl I

l
k,T ) = A−1

jj E(Ijk,T )) =

∫ π/2−j−1

π/2−j

f(ω)dω (3.12)

So that for stationary processes, the EWS, Sj(z) can be thought of as the in-

tegral of the Fourier spectrum over dyadic intervals: Sj(z) =
∫ π/2−j−1

π/2−j f(ω)dω.

This result extends naturally to the bivariate setting.

Proposition 3.4.2. If X
(1)
t,T and X

(2)
t,T are second order stationary, with cross-

spectral density f (1,2)(ω), then

lim
T→∞

E(I
(1,2)
j,k,T ) =

∫ π

−π
f (1,2)(ω)Ψ̂j(ω)dω, (3.13)

where Ψ̂j(ω) is as defined in Theorem 3.4.1.

69



Chapter 3. Locally stationary wavelet coherence

Proof of Proposition 3.4.2. Using the spectral representation of X
(1)
t,T and X

(2)
t,T :

X
(1)
t =

∫ π

−π
exp(iωt)dζ(1)(ω),

X
(2)
t =

∫ π

−π
exp(iωt)dζ(2)(ω),

where dζ(1)(ω) and dζ(2)(ω) are orthogonal increment processes with E|dζ(1)(ω)|2 =

f (1)(ω), E|dζ(2)(ω)|2 = f (2)(ω) and E(dζ(1)(ω)dζ(2)(ω)) = f (1,2)(ω). Following

von Sachs et al. (1997)

lim
T→∞

E(I
(1,2)
j,k,T ) = lim

T→∞
E
( T∑
t=1

X
(1)
t ψj,k(t)

T∑
t=1

X
(2)
t ψj,k(t)

)
,

= lim
T→∞

E
( T∑
t=1

∫
exp(iωt)dζ(1)(ω)ψj,k(t)

T∑
t=1

∫
exp(iωt)dζ(2)(ω)ψj,k(t)

)
,

= lim
T→∞

E
∫ ( T∑

t=1

ψj,k(t) exp(iωt)
)
dζ(1)(ω)

∫ ( T∑
t=1

ψj,k(t) exp(iωt)
)
dζ(2)(ω),

= lim
T→∞

E
∫
ω

∫
ω′

(ω)
( T∑
t=1

ψj,k(t) exp(iωt)
)
dζ(1)

( T∑
t=1

ψj,k(t) exp(iωt)
)
dζ(2)(ω′),

= lim
T→∞

∫
|
T∑
t=1

ψj,k(t) exp(iωt)|2f (1,2)(ω)dω,

=

∫
f (1,2)(ω)Ψ̂j(ω)dω.

It follows that for stationary processes the wavelet cross-spectrum, Cj(z),

can be thought of as the integral of the Fourier cross-spectrum over dyadic

intervals; Cj(z) =
∫ π/2−j−1

π/2−j f (1,2)(ω)dω. Furthermore, the LSW coherence can

therefore be thought of as the integral of the Fourier coherence over dyadic

intervals:

ρj(z) =

∫ π/2−j−1

π/2−j

K(1,2)(ω)dω. (3.14)
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3.5. Phase estimation

Note that in the above working we have shown the results for Shannon

wavelets. The expectation of the wavelet periodogram (and cross-periodogram)

is dependent on the quantity Ψ̂j(ω), the squared Fourier domain expression

of the inverse DWT operator. Different wavelets cover slightly different fre-

quency ranges (Nason and von Sachs, 1999). For the Shannon wavelet the

support of the dyadic-rescales does not overlap in the frequency domain. For

other wavelets this is not the case, however multiplication by the inverse inner

product matrix corrects for this leakage.

3.5 Phase estimation

Estimation of the phase between the series is another important consideration

and this subject is discussed in further detail in Chapter 6, in the context of

irregularly sampled observations. Phase estimation is possible in the special

case of equispaced time series through the use of complex-valued wavelets (see

e.g. Lawton (1993), Lina and Mayrand (1995), Kingsbury (2001)). However

as noted in Section 2.3.4 the LSW cross-covariance is maximised at τ = 0, and

so it is required in the model that there is no time delay between the signals.

Phase estimation is therefore not appropriate in the bivariate LSW framework

and the model requires further modification to provide a suitable estimator of

phase.

Although the bivariate LSW framework is not appropriate for phase esti-

mation, it is still possible to produce phase estimates using the raw wavelet

periodograms, without correcting for the bias implied by the LSW formula-

tion. While we do not consider this subject in detail, this section provides

an introduction to the subject, and a preview to the work of Chapter 6. The

empirical nondecimated wavelet coefficients are constructed as before (see Sec-

tion 3.3), but using complex wavelets. Since the periodogram ordinates are

now complex-valued this requires a slightly different definition of the wavelet

periodogram and cross-periodogram. Following the classical Fourier approach
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Chapter 3. Locally stationary wavelet coherence

described in Section 2.3.2 the wavelet periodogram and cross-periodogram,

derived using discrete complex wavelets, are defined as follows.

Definition 3.5.1. The wavelet periodogram for the LSW process X
(i)
t,T , con-

structed using a complex wavelet system, is given by I
(i)
j,t,T = |d(1)

j,t,T |2.

Definition 3.5.2. The wavelet cross-periodogram for the LSW processes X
(1)
t,T ,

X
(2)
t,T , constructed using a complex wavelet system, is given by I

(1,2)
j,t,T = d

(1)
j,t,T d

(2)
j,t,T .

The wavelet periodograms and cross-periodogram can then be used to es-

timate phase and coherence following the classical Fourier approach described

in Section 2.3.1. The quantities are first smoothed over time to give Ĩ
(i)
j (t/T )

for i = 1, 2 and Ĩ
(1,2)
j (t/T ). The cross periodogram is now a complex quantity

and can be written in terms of its real and imaginary parts:

Ĩ
(1,2)
j (t/T ) = cj(t/T )− iqj(t/T ).

Together these quantities can be used to estimate the complex wavelet

coherence and phase:

ρj(t/T ) =

√
cj(t/T )2 + qj(t/T )2√
Ĩ

(1)
j (t/T )Ĩ

(2)
j (t/T )

, φj(t/T ) = tan−1
(−qj(t/T )

cj(t/T )

)
.

The complex wavelet coherence provides a measure of the dependence between

the series and satisfies 0 ≤ ρj(t/T ) ≤ 1, while the phase provides an indication

of any time lag between the series. Measures of coherence and phase are also

considered in Chapter 6, where we look at the dependence between two signals

observed on irregular sampling grids.
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Chapter 4

Locally stationary wavelet

coherence: application

In the previous chapter it was seen that our proposed estimator of the locally

stationary wavelet coherence provides an asymptotically unbiased and consis-

tent measure of the dependence between two locally stationary time series.

This chapter considers the practical application of the proposed coherence es-

timator. Several issues that arise in the estimation procedure are considered,

and the methodology is demonstrated by application to a simulated example

and experimental data from neuroscience.

4.1 Practical considerations

4.1.1 Stability of the estimator

When estimating the LSW coherence using equation (3.6), values of Ŝ
(1)
l (t/T )

and Ŝ
(2)
l (t/T ) close to or below zero can lead to instabilities in the estimator.

By definition the wavelet spectra are strictly positive quantities as they are

the squared amplitudes. However because of the correction step in the esti-

mation procedure it is possible that the estimates of the evolutionary wavelet

auto-spectra may take values below zero. In this section we discuss several
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Chapter 4. Locally stationary wavelet coherence: application

variants on the correction procedure, and the resulting effects on the coher-

ence estimate. The following techniques for estimating the LSW coherence are

considered:

1. Not correcting. Under some circumstances it may not be necessary to

correct at all and missing out the correction step of the estimation procedure

avoids introducing stability issues. The uncorrected wavelet coherence is given

by

ρUCj (z) =

∑−1
i=−∞W

(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Ai,j√∑−1

i=−∞ S
(1)
i (t/T )Ai,j

√∑−1
i=−∞ S

(2)
i (t/T )Ai,j

.

There are two occasions when this estimator will be unbiased; i) when the

matrix AJ is diagonal (as is the case with the Shannon wavelet) and ii) if the

evolutionary wavelet spectra and cross spectrum are not dependent on scale.

Generally AJ will not be diagonal, however for wavelets with long length of

support the bias may be small and so the uncorrected measure may give a good

estimate. Also, we cannot generally assume that the spectra and coherence

will be constant over scale. Although these two assumptions may be unrealis-

tic, it can be seen that under certain circumstances the uncorrected measure

may give a good approximation to the true coherence.

2. Correcting. An unbiased estimate of the LSW coherence is provided by

forming the measure using the corrected estimates of the cross spectrum and

EWS as in equation (3.6). However as previously noted, this estimator may

become unstable.
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3. Regularisation. One way to ensure stability in the corrected estimator is

to bound the spectra so that they can not take negative values. This bound

can be applied to the individual spectra by taking

ŜRj (z) = max(Ŝj(z), εR) (4.1)

or alternatively we could bound the product Ŝ
(1)
j (z)Ŝ

(2)
j (z). The major issue

here is with the choice of bound. The bound, εR, should be large enough that

the resulting coherence estimate is less than one, but as small as possible to

reduce the bias.

An improvement to this method is to estimate the autospectra using either

non negative least squares (Lawson and Hanson, 1974) or by formulation as a

local complimentary problem (Murty, 1988). Using these methods it is possible

to correct the estimates of the spectra with the constraints that they must be

greater than zero (or our chosen bound). This provides a better fit than the

simple bounding method but the same problem is still encountered, in that it

is necessary to set a lower limit for the values that the spectra can take.

Estimating the spectra using regularisation gives an asymptotically biased

estimate:

ŜRj (z) = Ŝj(z) +R

where R = 0 if Ŝj(z) ≥ εR and R = εR − Ŝj(z) otherwise.

4. Truncation of the correction matrix Another possible solution that

has been considered is to truncate the correction matrix, A−1
J , at zero to give

(A−1
J )+, thus ensuring that the resulting estimates will be positive. Instead of

estimating via Ŝ
(i)
l (t/T ), we instead use S̃

(i)
l (t/T ) =

∑−1
j=−J∗ Ĩ

(i)
j,t,T (A−1

l,j )+. The

expectation of S̃l(t/T ) is given by
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Chapter 4. Locally stationary wavelet coherence: application

ES̃l(t/T ) =
−1∑

j=−J∗

EĨ(i)
j,t,T (A−1

l,j )+

=
−1∑

j=−J∗

(
−1∑

i=−∞

Si(t/T )Aij + (2−j +M)O(T−1))(A−1
l,j )+

=
−1∑

j=−J∗

−1∑
i=−∞

Si(t/T )Aij(A
−1
l,j )+ + (2−j +M)O(T−1)

=
−1∑

j=−J∗

(A−1
l,j + Pl,j)

−1∑
i=−∞

Si(t/T )Aij + (2−j +M)O(T−1)

=
−1∑

j=−J∗

A−1
l,j

−1∑
i=−∞

Si(t/T )Aij +
−1∑

j=−J∗

Pl,j

−1∑
i=−∞

Si(t/T )Aij + (2−j +M)O(T−1)

= Sl(t/T ) +
−1∑

j=−J∗

Pl,j

−1∑
i=−∞

Si(t/T )Aij + (2−j +M)O(T−1)

by rewriting (A−1
i,j )+ as (A−1

i,j )+ = A−1
i,j +Pl,j. The bias incurred from correcting

by (A−1
J )+ instead of A−1

J is therefore given by
∑−1

j=−J∗ Pl,j
∑−1

i=−∞ SiAij which

is a strictly positive quantity. This method is therefore similar to regularisation

in that we are adding a correction factor to the original spectral estimate. The

difference is that we do not need to choose the bound as the value of Pl,j,

and hence the bias, is determined by the choice of wavelet. This method is

therefore more straightforward to implement than method 3, but the major

drawback is that it tends to result in a larger bias. This is because in many

cases the resulting (unmodified) spectral estimates will be strictly positive,

leading to an unbiased and stable estimate of the LSW coherence, yet we are

still applying this modified correction procedure and introducing a needless

source of bias. This is not the case with the regularisation procedure, which

modifies the resulting spectral estimates only if they fall below the set bound.

For wavelets such as Daubechies with long lengths of support, the number

of negative values is low and so the bias incurred by this alteration is minimal.

However, particularly for wavelets with short length of support (such as Haar),
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the resulting estimate substantially over-estimates the spectrum. The method

may be useful when using wavelets with longer length of support, however in

this case it may be just as effective to estimate the coherence using the uncor-

rected quantity.

5. Smoothing over scale. It is also possible to stabilise the estimator

by smoothing over scale. Performing this extra smoothing reduces the vari-

ance of the estimator further and, by suitable choice of smoothing parameters,

can ensure that the spectra do not take negative values. Though this method

introduces bias, the bias is minimal, particularly at fine scales where not much

smoothing is necessary to ensure stability. It is necessary to choose the amount

of smoothing but this is less of an issue than the problem with choice of bound

as it cannot force the coherence to take certain values.

We smooth over scale allowing a different vector of weights for each scale.

This produces a J∗×J∗ matrix of weights, denoted D, where the element Dl,j

is the contribution of scale j to the smoothed estimate of scale l, and the rows

thus sum to 1. Correcting for the bias by multiplying by A−1
J has the effect of

applying a scale factor of about 2j to scale j, so that fine scales are scaled up

in comparison to coarse scales.

Since we choose to smooth over scale after correcting, we smooth using the

following scheme: a) first the estimates are re-scaled by 2−j, b) the estimates

are smoothed over scale, c) the scaling factor of 2j is re-introduced. The

corrected, scale smoothed estimate is therefore given by:

˜̃I
(1,2)
l,t,T =

( −1∑
j=−∞

2−jDl,j Ĩ
(1,2)
j,t,T

)
2l.

In the examples below we smooth over the neighbouring 5 scales. Different

choices of smoothing weights are allowed for the estimates of each scale. For

fine scales it is often not necessary to smooth over scale at all so that at fine

scales of l we may have Dl,j = δj,l.

77



Chapter 4. Locally stationary wavelet coherence: application

The matrix, D, is described by choosing the weights on the leading diago-

nal, and then the off-diagonal elements are chosen as decaying proportions of

1−Dl,l with modifications for end values as follows:

D =



D1,1
2(1−D2,2)

6

1(1−D3,3)

6
0 · · ·

4(1−D1,1)

6
D2,2

2(1−D3,3)

6

1(1−D4,4)

6

2(1−D1,1)

6

2(1−D2,2)

6
D3,3

2(1−D4,4)

6

0 1(1−D2,2)

6

2(1−D3,3)

6
D4,4

...
. . .


.

In order to compare the different approaches to stabilising the estimator, we

apply the methods to time series simulated according to a known Fourier

coherence. Since the series are stationary, we smooth over the full length

of the series and hence obtain one value at every wavelet scale. The Fourier

coherence is assumed to be piecewise constant (see Figure 4.1). This is so that

the coherence varies over frequency but is approximately constant within each

wavelet scale. The Fourier autospectra are assumed to be white noise processes

i.e. the spectra are constant over frequency. The associated wavelet coherence

has an erratic form which makes this coherence structure a good test data set

for the different estimators, since any leakage across the scales will be clearly

visible.

The corresponding LSW coherence for the different estimators, based on

100 simulations, is plotted in Figure 4.2. For these estimates we have used

Daubechies extremal phase wavelets with N = 6. In each plot the grey lines

show the individual sample paths, while the coloured lines represent the mean

values over the 100 simulations. The ‘true’ coherence structure, as estimated

from the Fourier coherence using the approximation
∫ π/2−j−1

π/2−j K12(ω), is plotted

with the dashed line to act as a guide for the accuracy of the estimators.

Although stable, the uncorrected LSW coherence estimator (method 1)

clearly suffers from leakage across scales and the resulting coherence appears
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4.1. Practical considerations

smoothed. The corrected measure (method 2) remedies this problem but it

becomes unstable at coarse scales. The regularisation and truncation of the

correction matrix methods (3 and 4) both ensure that the resulting corrected

estimator is stable, but produce biased estimates of the coherence. For the

scale-smoothed measure (method 5) the estimates are smoothed over scale

using weights of Dj = (0.9, 0.9, 0.85, 0.85, 0.80, 0.80, 0.75, 0.75, 0.70, 0.60, 0.55)

on the leading diagonal. The amount of smoothing was chosen to ensure stable

estimates at all scales with as little bias as possible. The scale-smoothed

measure is both accurate and stable.

Therefore, we recommend overcoming the problems with stability of the

estimator by smoothing the cross-periodogram over scale as well as time.

Smoothing over scale reduces the variance of the estimator further, producing

stable estimates of the LSW coherence. Though this additional smoothing in-

troduces extra bias into the estimator, the bias can be minimised by suitable

choice of the smoothing parameters. The weights on the leading diagonal are

chosen to be as close to 1 as possible, while maintaining stability.
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Figure 4.1: Piecewise constant Fourier coherence. The true coherence structure
is shown in black and the estimated coherence for one realisation is shown in
blue.
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Figure 4.2: Comparison of stabilisation methods: 1) uncorrected 2) corrected
3) corrected with regularisation 4) corrected with truncated correction matrix
5) corrected and scale-smoothed. The true coherence structure is shown by
the dashed line.

80



4.1. Practical considerations

4.1.2 The effect of J∗

It is also necessary to select a value of J∗ = αlog2(T ), the number of scales

over which the periodogram is corrected. In order to ensure consistency of

the estimator, α is chosen to be in the interval (0, 1). A value of α close to

1 ensures a decomposition over the largest possible number of scales; however

in practice not all of these scales will be informative and the proportion of

informative scales will depend on the data and the choice of wavelet. As a

default, we propose taking the proportion α = 0.7 which provides accurate

estimates across different simulated examples. To illustrate this, we consider

an estimation experiment on simulated data. The coherence is estimated for

various values of J∗, demonstrating the effect on the observed coherence. Ide-

ally J∗ should be as large as possible to give a decomposition over as many

scales as is feasible, but making sure that this results in informative estimates

of the coherence.

We simulate bivariate stationary time series of length 210 with a known

Fourier coherence. For each pair of time series the LSW coherence is estimated

by correcting over J∗ = (10, 9, 8, 7, 6) scales, i.e. α = (1, 0.9, 0.8, 0.7, 0.6). Since

the time series are stationary, the series are smoothed over time by averaging

over the entire length of the series and hence the results are not affected by

the choice of time smoothing parameter. Smoothing over scale is conducted

with the weights Dl,l = (0.9, 0.85, 0.85, 0.8, 0.75, 0.7, 0.6, 0.55, 0.45, 0.45) on the

leading scales. This choice of scale-smoothing parameters was selected to en-

sure the stability of the estimates, while introducing a minimal amount of bias.

The estimated LSW coherence for each choice of J∗ is shown in Figure 4.3.

Here the length of the estimate indicates the choice of J∗. The ‘true’ LSW

coherence, corresponding to the integral of the underlying Fourier coherence

over dyadic intervals, is plotted with the dashed line. From this we estimate

that informative estimates of the coherence are produced for choices of J∗ up

to 7 (giving α = 0.7).
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Figure 4.3: Estimated stationary LSW coherence for different choices of J∗.
Here we plot the mean over 200 simulations and the choice of J∗ is indicated by
the length of the corresponding estimate. The underlying coherence structure
is indicated by the dashed line.

4.1.3 The effect of smoothing over time

Smoothing over time is conducted using a simple moving average kernel smoother,

described in equation (3.5), and it is necessary to choose the width of the

smoothing window, M . We choose to increase the width of the smoothing

window as the scale becomes coarser and the width of the smoothing window

at scale j is denoted Mj. This is natural since the wavelet coefficients at coarse

scales display a longer correlation length.

To justify this choice, we consider the case of smoothing the auto-periodogram

of a white noise process. In this case, the variance of the periodogram is

Var(Ij,k,T ) ≈ 2, using the result from Proposition 2.3.7 and since for white

noise E(Sj(z)) = 2j. Figure 4.4 shows the effect of smoothing on the variance

of the wavelet auto-periodogram of a white noise process. The plot is based

on 1000 simulations of a white noise process. The variance of the raw peri-

odogram is approximately 2 at all scales as expected, and the variance then

reduces as the length of the smoothing window is increased. The plotted lines

represent window lengths of M = 0, 10, 25, 100 and 200, with the final line
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4.1. Practical considerations

representing the variance after smoothing over the whole length of the series.

For a fixed smoothing window over all scales, the variance of the smoothed

periodogram estimates would increase as the scale becomes coarser. This is

because at coarser scales the length of support of the wavelet is larger, and

averaging over a fixed window length involves less independent information.

It therefore makes sense that when smoothing over time, the width of the

smoothing window should increase as the scale becomes coarser.
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Figure 4.4: Effect of the width of the smoothing window on the variance of
the periodogram of a white noise process. Choices of M = 0, 10, 25, 100, 200
and T are considered.

4.1.4 Other issues

Another issue that will affect the estimates is the choice of wavelet. The

wavelet can be chosen according to the properties of the time series that it is

representing. For example if the series contains sharp jumps then the Haar

wavelet might be preferable, whereas for series with smoother features other

wavelets, such as Daubechies least asymmetric (Daubechies, 1992), might be

preferable.
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4.2 Applications

4.2.1 Simulated example

The first example applies our method to data simulated from a bivariate locally

stationary wavelet process with a known, nonstationary coherence structure

that varies between scales. For even scales we take ρj(k/T ) = 0.5, and for

odd scales we assume a non-stationary structure that forms an ‘inverted v’

between 0.2 and 0.8. The EWS of each process are taken to be white noise so

that S
(i)
j (k/T ) = 2j. For this example the series is of length T = 213, and we

correct over J∗ = 9 (α = 9/13) scales.

The results from one such simulation, using Daubechies least asymmetric

wavelet with N = 5 vanishing moments, are shown in Figure 4.6. The esti-

mates are smoothed over scale using weights on the leading scales of Dl,l =

(0.95, 0.95, 0.95, 0.9, 0.9, 0.9) for l = 1 to 6. As previously, this choice of scale-

smoothing parameters was selected to ensure stability of the estimates, while

introducing a minimal amount of bias. For smoothing over time, we use a

bandwidth of Mj/T = (0.025, 0.05, 0.075, 0.1, 0.125, 0.15), so that the band-

width increases as the scale becomes coarser. The estimated coherence struc-

ture from one realisation of the process is shown in Figure 4.5. The estimated

coherence follows the true coherence closely.

4.2.2 Application to neuroscience data

The method is now demonstrated with application to experimental neuro-

science data, previously described by Jones and Wilson (2005). We consider

the coherence between local field potentials (LFP) in two functionally and

anatomically connected areas of a rat’s brain: the hippocampus and the pre-

frontal cortex. The LFP provide a measure of averaged activity over local neu-

ronal populations, and the estimated LSW coherence presents an indication of

the extent to which activities in the two areas are coordinated, decomposed
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Figure 4.5: Results showing the true coherence in grey, and estimated coher-
ence in black from the simulation example. Subplots a) to f) correspond to
scales -1 to -6 respectively.
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over scale and over time.

The measurements are taken while the rat is performing a maze-based task,

designed to invoke spatial working memory and decision-making. The complete

experimental procedure can be decomposed into smaller sections of 13 trials,

with each trial comprising a ‘forced turn’ epoch and a ‘choice’ epoch. Each of

these epochs are 6s in duration, corresponding to the section of the task when

the rat is moving along the central arm of the maze, immediately prior to reach-

ing a T-junction turning point. During forced turn runs the direction at the

T-junction is pre-determined by a movable barrier, whereas in choice epochs

the rat is free to choose either direction. It is expected that hippocampal-

prefrontal interactions are selectively recruited during active decision-making

on choice runs, and that these interactions will be reflected by increased coher-

ence relative to forced turn epochs, presenting an indication of the extent to

which activities in these connected brain regions are coordinated. In order to

eliminate other sources of variation, trials in which the rat made the incorrect

decision at the turning point were not included in the analysis.

During neurophysiological recordings, the local field potential data were

recorded at a sampling frequency of 625Hz. As part of the preparatory data

analysis the data was downsampled by taking every third measurement, giving

a sampling frequency sufficient to estimate coherence at less than 100 Hz. In

order to provide a comparison between our results and Fourier approaches, we

use the approximation given in Section 3.4 that a wavelet scale j corresponds

to Fourier frequencies in the interval (2j−1(∆t)−1, 2j(∆t)−1). In Jones and

Wilson (2005), significant coherence was found in the theta frequency range of

4−12Hz. Using this approximation, the downsampling ensures that the theta

frequency band is contained within wavelet scales −4 and −5. We smooth

over all 3 subsamples to ensure that information is not lost. Other amounts of

downsampling were also investigated to ensure that features were not missed,

but this extra analysis offered no additional insight.

Since choice runs invoke spatial working memory, we would expect to see
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Figure 4.6: Trial averages for choice runs (a) choice forced-turn runs (b) scales
-1 to -5 using Daubechies extremal phase wavelet with N = 8 vanishing mo-
ments.
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Figure 4.7: LSW coherence for scale −4 with means before and after the
reference point plotted in bold. The associated confidence intervals are plotted
with dashed lines.

a change in correlation structure when the rat approaches the turning point.

For forced runs we would not expect to observe this change. The locally

stationary wavelet coherence averaged over all 13 trials is shown in Figure

4.6. We emphasise that the locally stationary wavelet coherence is not only

applicable in repeated measurements situations but works in the context of

single measurements too, as illustrated in our simulation study of Section 5.1.

In the present case study, the variability between trials is high and so the

trial average provides a clearer comparison between groups. The presented

results have been produced using Daubechies extremal phase wavelet, N=8,

scale-smoothing using Dl,l = (0.95, 0.9, 0.9, 0.9, 0.85) on the leading terms and

smoothing over time using a bandwidth of Mj/T = (0.05, 0.1, 0.15, 0.2, 0.25).

Figure 4.6 shows an area of increased coherence towards the end of the series

at scale −4 for the choice run data. This feature is not observed in the forced

run data.

After 4s of the trial, the rat has travelled approximately 3/4 of the way

down the central arm of the maze. This is a good reference point as the rat’s
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movement at this stage of the task is consistent between trials. The actual time

point at which the rat turns at the junction varies between trials, but occurred

at 5.4s on average. From Figure 4.7, we see that at approximately 5s, after

the reference point but before the estimated turning point, there is a marked

change in the coherence structure; we judge the significance of this change by

looking at the mean coherence before and after the 4s reference point. Con-

fidence intervals are constructed by simulation: given the estimated wavelet

coherence and autospectra, we simulate n new series. For each series we take

the same estimator, the mean before and after the reference point, and then

take the nα and n(1−α) ordered values to give the lower and upper confidence

limits. The estimate and resulting 90% confidence intervals for scale −4 of the

choice data is shown in Figure 4.7. The mean wavelet coherence is significantly

different between the two sections of the data, suggesting that there is a sig-

nificant change in interaction between the hippocampus and prefrontal cortex

as the rat approaches the turning point. This effect was only observed at scale

−4 on the choice run data sets.

Figure 4.8 illustrates the original findings of Jones and Wilson (2005) using

the Fourier transform. Note that these results represent the coherence for the

full set of trials (17 in total), including those in which the rat made the wrong

decision at the turning point. The plot shows the trial-averaged coherence for

the entire length of the central-arm of the task, split into forced-turn (grey)

and choice (red) trials. The coherence shown in red can therefore be compared

to LSW coherence results shown in Figure 4.6a, while the coherence plotted

in grey can be compared to Figure 4.6b. Similarly to the findings presented

in this thesis, the Fourier transform method shows significant coherence only

in the theta-frequency range, and only during choice epochs. However unlike

the LSW coherence method, the results using the Fourier transform provide

no information on the time-dependence of the results. Figure 4.9 shows the

nonstationary coherence (for the 13 trials in which the rat made the correct

decision at the turning point) as estimated by the short time Fourier transform.
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Figure 4.8: Trial-averaged central-arm coherence, reproduced from Jones and
Wilson (2005, Figure 7b). Central-arm coherence is subdivided into forced-
turn (grey) and choice (red) directions. Dashed line marks 95 % confidence
level, with shaded band thickness corresponding to jackknife error bars (esti-
mated over trials and nine tapers).
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Figure 4.9: Trial-averaged coherence for the choice trials (a) and forced-turn
trial (b) using the short time Fourier transform with a window width of 0.5
seconds, run at 0.005 second increments.
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4.3. Summary and further work

An area of increased coherence can be seen in the theta frequency range at a

time of around three to four seconds, indicating a slight difference in the exact

timing of the coherence change than that provided by the LSW coherence

estimate.

4.3 Summary and further work

In Chapter 3 we introduced the bivariate LSW process model, providing an

extension to the univariate time series model of Nason et al. (2000). Through

this formulation, we proposed a novel measure of linear dependence, termed

LSW coherence. An important difference between the LSW coherence and pre-

vious wavelet coherence measures lies in the particular bias correction implied

by the LSW model. Use of our methodology was demonstrated with respect

to a simulated example, as well as experimental data from neuroscience.

Our analysis of the neuroscience example corroborates the previous results

from Jones and Wilson (2005) using the Fourier transform, indicating that

the LSW coherence methodology provides a suitable tool for the analysis of

these data sets. The real advantage of this new method over the global Fourier

transform stems from the natural time localisation of wavelets, providing extra

information on the time dependence of the coherence. The short time Fourier

transform can be used to extend the Fourier methods to nonstationary set-

tings by applying the Fourier transform to a localised time window that slides

along the time axis; however the window width is constant over all frequencies.

It is desirable to select a small time window for accurate localisation at high

frequencies, but a large time window is needed to capture low frequency infor-

mation. This trade-off becomes particularly hard to meet in the case of long

time series that cover a large frequency range. In the example of Section 4.2.2

the data has been segmented into short trials, but the original data recordings

are much longer, in some cases spanning as long as 24 hours. Application of

the short time Fourier transform, and in particular choice of the window width,
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would be problematic in these scenarios.

LSW coherence provides a representation of the dependence structure with

less redundancy than similar methods that use the continuous wavelet trans-

form. Methods using complex continuous wavelets do, however, have the ad-

vantage that this allows for an estimation of the phase between the signals.

Extension of our method to allow for phase estimation would be very interest-

ing. This is possible in the model through the use of discrete complex wavelets,

as described in Section 3.5.

Another important consideration is the application to multivariate data.

Existing methods of assessing multivariate dependence include those of Dahlhaus

(2000), who extended univariate locally stationary processes to a multivariate

setting and Ombao et al. (2005) which is an extension to the univariate ap-

plication of smooth localized complex exponentials. The application of our

method to multivariate cases is possible using the current methodology by

taking pair-wise combinations of multivariate series. Generalisation of the bi-

variate LSW model to a fully multivariate model is also possible. In extending

the current formulation to a multivariate model, inference is aided by the fact

that the individual spectrum of each series is dependent only on the properties

of the given series, and not on the other signals of the multivariate process.

This property is illustrated by the fact the individual EWS of each process are

estimated similarly to the univariate case of Nason et al. (2000). This is not

the case for the bivariate Cramér representation; through the transfer function

formulation, the individual spectra of each series are dependent on the other

signals of the process (see Ombao et al. (2005, Section 3)). Therefore the com-

plexity of the multivariate Cramér model increases quickly as the number of

series increases.
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Chapter 5

Periodogram estimation for

irregular situations using

wavelet lifting

As seen in the previous chapters, wavelets provide a useful tool for the rep-

resentation and visualisation of nonstationary time series. Through the use

of the NDWT, a sampled signal was decomposed into a set of wavelet coef-

ficients which were then used to estimate the evolutionary periodogram and

spectrum. Although classical wavelet techniques have proved useful in many

settings, there are also limitations to these methods. For example the classical

DWT and NDWT rely on the observations having a regular sampling rate.

Time series with irregular spacing can occur in a variety of different settings.

It may be that a time series is regularly spaced, but contains missing data due

to, for example, machine failure or censoring. This type of irregularly spaced

data is often termed ‘gappy’ (Mondal and Percival, 2008). Alternatively, the

sampling grid may be intrinsically irregular. In climate research, for example,

irregular spacing of observations is a common problem. As discussed further

in Section 5.7, when analysing ice-core data, equidistant sampling along the

depth of the core leads to a coarsening of time resolution with increasing age
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(Witt and Schumann, 2005). The irregular nature of palaeoclimate time series

motivates the work of this chapter, and we present our results on palaeoclimate

signals in Section 5.7.

In the majority of applications, irregularly spaced time series are processed

prior to analysis, restoring the data to a regular grid which is then suitable

for analysis by standard spectral methods. A commonly used method for this

purpose is interpolation, often using splines (Yiou et al., 1996).

Resampling techniques such as ‘sample and hold’ and ‘nearest neighbour’

are also popular (Broerson, 2008). Using resampling methods, the data is

transformed to a regular grid using the irregularly sampled measurements close

to the imposed grid structure. With sample and hold the underlying function

is assumed to have a piecewise constant structure that is defined by the ir-

regularly spaced observations. Nearest neighbour resampling simply replaces

the unobservered regularly sampled points with the nearest neighbouring ob-

servation. With both of these resampling methods, the multiple use of single

observations is a common problem. This can be avoided by using the slotting

principle; an observation is only used if it is within a certain distance from the

resampling grid point. Using slotting, the irregularly sampled data is therefore

transformed to a regular grid with missing observations. Although it is conve-

nient to work within a regularly spaced time series setting, a typical result of

interpolation will be smoothing of the signal, leading to the loss of information

at high frequencies (Frick et al., 1998).

Ideally we would like to avoid restoring the data to a regular grid to en-

sure that the analysis is not dependent on the chosen pre-processing method.

There are several methods available that make direct use of the irregularly

spaced observations. A popular method for stationary series is the Lomb-

Scargle periodogram (see Lomb (1976) and Scargle (1982)) which is equivalent

to least-square fitting of sinusoids to the data. If the data consists of pure

Gaussian noise then the obtained Lomb-Scargle periodogram follows an ex-

ponential distribution, a result which can be used to test the significance of
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detected events. The Lomb-Scargle periodogram and other methods for spec-

tral analysis of irregularly sampled stationary time series are reviewed and

compared in Stoica and Sandgren (2006). Mondal and Percival (2008) propose

unbiased estimators of the wavelet variance for gappy data, but this relies on

the data irregularities being of the missing data type. It is also assumed that

the series has stationary d’th order differences.

Mondal and Percival (2008) state that their method could also be extended

to nonstationary situations by using similar techniques to those of Nason et al.

(2000). Other methods for nonstationary series include the weighted wavelet

Z-transform (WWZ) of Foster (1996) which has been applied to the analysis of

palaeoclimate records (see e.g. Witt and Schumann (2005)). The application

of wavelet analysis to irregular time series has also been considered by Frick

et al. (1998) who introduce the use of ‘gapped wavelets’. Another relatively

new technique is that of Qi et al. (2002). The data is modelled using a basis

of sines and cosines with time varying amplitudes and the coefficients are

estimated using a Bayesian framework.

This chapter considers the use of spectral analysis based on one coefficient

at a time wavelet lifting (Knight et al., 2010) to analyse irregularly sampled

palaeoclimate signals. Sections 5.1 and 5.2 review the work of Knight et al.

(2010) in constructing the nondecimated lifting periodogram. Section 5.3 ex-

plores this method further, examining the relationship between wavelet lifting

scale and Fourier frequency. This is crucial when considering the application

to palaeoclimate series which are more commonly described in terms of Fourier

periods of oscillation rather than wavelet scale. We then introduce the empiri-

cal mode decomposition approach as an interesting comparison to the wavelet

lifting techniques. Both methods are demonstrated on palaeoclimate time se-

ries in Section 5.7. Having highlighted the advantages and disadvantages of

each method, the different approaches are compared in Section 5.8.

We begin by describing the nondecimated lifting transform before detailing

its use in forming the nondecimated lifting periodogram for irregular data.
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5.1 The nondecimated lifting transform

As explained in Section 2.2.2, the one coefficient at a time (OCAAT) lifting

scheme can be used to decompose a signal into a lower resolution signal and

a set of wavelet coefficients. Recall that the NDWT produces wavelet coef-

ficients, dj,k, at each dyadic scale, j ∈ {−1, ...,−J}, for each time location,

k ∈ {0, ..., T − 1} . In contrast, the one coefficient at a time lifting scheme

produces one wavelet coefficient, djr , at each observation point, xjr , associated

with a particular scale, αjr i.e. xjr → (djr , αjr). Using the matrix representa-

tion of the OCAAT lifting transform, the coefficients have the form
dx1
...

dxn

 = R


f1

...

fn

 , (5.1)

where R is an n × n matrix built by the OCAAT lifting scheme. From this

it follows that dxi =
∑n

j=1 ri,jfj and each detail is a linear combination of the

observed data.

To be able to construct a full spectral representation of a process, where

for each time point we have an estimate at each (artificial) scale, Knight and

Nason (2008) introduce a nondecimated lifting transform (NLT). The key to

this method is in noting that the OCAAT lifting scheme produces a decom-

position which is highly dependent on the removal order of points. Instead

of considering just one order for removal of points, the nondecimated lifting

transform considers a set of P randomly chosen removal orders. In this way,

each xjr becomes associated with a set of tuples for (djr , αjr), one tuple for each

removal order. Following Knight and Nason (2008) we now briefly summarise

the NLT.

We start with a trajectory, T = (xo1 , ..., xon) where (o1, ..., on) is a permu-

tation of the set of point indices {1, .., n}. Thus the trajectory, T , gives the

observation points in their order of removal. At each stage of the algorithm,
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the data is lifted one coefficient at a time according to Jansen et al. (2001), but

with the modification that the point to be removed is selected following the

predefined removal trajectory, T . The first point to be lifted is xo1 , the second

xo2 and so on. This is different to the standard OCAAT lifting scheme, which

suggests that the selection of the point to be removed is based on a chosen

criterion, such as the length of integral of the scaling function (Jansen et al.,

2001). If the primary resolution level is set to be L, the points to be removed

are xo1 to xon−L
, with the last L entries of T denoting the scaling coefficients.

The nondecimated lifting transform of Knight and Nason (2008) consists

of repeated applications of this modified algorithm, using different random

trajectories, Tp for p ∈ 1, ..., P . This provides P sets of wavelet coefficients,

each described by a different matrix R1, ..., RP . For each removal location, xk,

where k = 1, ..., T , the NLT provides a set of details {dpxk}p=1,...,P where dpxk is

the coefficient at location xk, obtained from trajectory Tp. For a given point,

xk, its removal rank will vary throughout the set of trajectories. If a point is

removed early on in the algorithm, the resulting wavelet coefficient is likely to

be associated with a small integral value and therefore a fine scale. Conversely,

if a point is removed later in the algorithm it is likely to be associated with a

larger integral value and hence a coarser scale. This is demonstrated in Figure

5.1. The wavelet coefficients at each time location will therefore be associated

with different scales, where scale is now a continuous measure as defined in

Section 2.2.2. This is different to the classical NDWT which produces one

wavelet coefficient at each location and dyadic scale. If the series is of length

n, then the number of possible trajectories is given by n!. In practice just

a sub-sample of these trajectories is used for implementation. The number

of trajectories should be ‘large enough’ to ensure that an ample number of

coefficients is produced at all scales and locations, subject to computational

constraints.

The NLT has been successfully applied to problems in nonparametric re-
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Figure 5.1: Relationship between wavelet lifting scale and removal order for
the example illustrated in Figure 2.5. When the point x4 is removed at the first
stage of the algorithm it is associated with a small integral as shown in subplot
a. When the point is removed after points x2, x3 and x5, it is associated with
a larger integral, as shown in subplot b.

gression (Knight and Nason, 2008) and can also be extended for use in spectral

estimation. Following Knight et al. (2010) we now describe how the NLT can

be used to define a periodogram for irregularly spaced data.

5.2 The nondecimated lifting periodogram

Recall that the NDWT periodogram for a series of length T is a T × J array,

containing the squared detail coefficients associated with locations 0, .., (T −1)

at scales −1, ...,−J where J = log2(T ). Knight and Nason (2008) define a sim-

ilar array for data with irregular observations. Since in a wavelet lifting setting

the scale associated with each wavelet coefficient is a continuous quantity (see

Section 2.2.2), the scale is first partitioned into a set of discrete intervals, or

artificial scales, according to {li}i∈{1,2,..,J∗}, where J∗ is chosen to provide the

desired resolution level.

For each time location, xk, and each artificial scale, li, the NDWT provides

a set of squared wavelet detail coefficients {(dpxk)2 : αpxk ∈ l
i}. This is the set

of all squared wavelet coefficients associated with time xk that have integral

length in the set li. In order to form the periodogram we would like to use
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5.2. The nondecimated lifting periodogram

this set of wavelet coefficients to give a unique value. Knight et al. (2010) uses

these sets of detail coefficients to estimate one single value, f̂xk(li), using a

nonparametric regression approach. The squared details (d1
xk

)2, ..., (dpxk)2 are

modelled as a function of the corresponding scale α1
xk
, ..., αpxk according to

(dpxk)2 = fxk(αpxk) + εp, p ∈ 1, .., P. (5.2)

For each time location xk, fxk is the function of interest and in practice, we

are interested in its values at the set of discrete intervals {li}i∈{1,2,..,J∗}. Using

a linear smoother provides the estimate

f̂xk(li) =
P∑
p=1

Kp(l
i)(dpxk)2, ∀i ∈ {1, 2, .., J∗}, (5.3)

where Kp(l
i) are weight functions that are non-zero only for those p values

such that lpxk is in the neighbourhood of li and the weights Kp are different for

each xk. The value f̂xk(li) provides an estimate of the squared details at time

tk and associated with interval length li. The matrix {f̂xk(li)}i=1...J∗,k=1...n

forms the NLT periodogram. Note that this method does not ensure that

the periodogram estimates are positive, although it is possible to do so by

modelling the log squared details and then exponentiating.

Alternatively, as we use in our implementation, it also possible to estimate

the periodogram ordinates by taking the average of the wavelet coefficients

within each scale. Estimating the wavelet coefficients this way leads to the

following definition of the NLT periodogram.

Definition 5.2.1. For each time point, xk, k ∈ 1, .., n and each artificial scale

li for i ∈ 1, .., J∗, the wavelet lifting periodogram is defined as

Ixk(li) = mean{(dpxk)2 : αpxk ∈ l
i}.

Taking the average of the coefficients rather than using a nonparamet-
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ric regression approach ensures that the resulting periodogram estimates are

not affected by the choice of regression method. The averaging method has

further benefits over nonparametric regression techniques when, in later chap-

ters, we consider the estimation of the coherence between two series. Therefore

throughout the rest of this thesis we form the periodogram as stated in Def-

inition 5.2.1. However, note that under different circumstances it may be

preferable to form the periodogram using nonparametric regression.

Smoothing over time

Before plotting the NLT periodograms, we first smooth the estimates over time.

In our implementation we use simple moving average smoothing, paralleling

the regularly sampled case described in Section 3.3. The smoothed estimate

is given by

Ĩxk(li) =
1

#(Mj)

∑
j∈Mj

Ixj(l
i), (5.4)

where Mj = {j : xk − M < xj ≤ xk + M} and M denotes the width of

the averaging window. Smoothing over time serves to reduce the variance,

providing a clearer visualisation of the characteristics of the data. As in the

regularly sampled case, it might also be preferable to modify this formulation

so that the width of the time window is a function of scale. In the current

methodology we use the same width of smoothing window for all scales but

further research in this area would be advisable.

Missing values

Also note that, unlike the NDWT periodogram, it is possible to have missing

values in the resulting NLT periodogram. Sometimes missing values can be

filled by taking a larger sample of trajectories, but often the missing values

occur as a natural result of the sampling structure. This is evident in the

plots of Figure 5.3 by the missing values at small scales. The scale information
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5.2. The nondecimated lifting periodogram

revealed in the periodogram depends on the sampling rate which in our chosen

application is dependent on time. We will therefore observe higher frequency

information at some points in time than at others. Although it is possible to

use interpolation to provide periodogram estimates at the missing ordinates,

we choose not to, using uncoloured areas to emphasise the information that

cannot be provided by the series.

Example of periodogram construction

We now provide an example of the construction of the NLT periodogram for

a simulated series. The series consists of 500 values, observed on an irreg-

ular sampling grid in which the sampling rate varies between 1 and 3. The

signal consists of a noisy sine wave with period 25 and a sine wave with pe-

riod 80 which is just present for the middle section of the data. The wavelet

coefficients are calculated using a random sample of 5000 trajectories. Each

coefficient is associated with a scale, and the range of observed scales is depen-

dent on the sampling of the data and the length of the time series. Since the

finest sampling difference observed in the data is 1, the lowest scale coefficients

estimated from the data will have αpxk = 1. The largest scale coefficient that

is estimated from the data depends on the randomly selected trajectories but

will not exceed the length of the time series. In practice it is more convenient

to work with log2(αpxk) and the finest and coarsest scales may appear patchy

so in this example we restrict the log2-scale range to 2-7. Within this scale

range we have discretised to form 20 artificial scales, {li}i∈{1,2,..,20}.

The construction of the periodogram ordinates for one time point, x200, is

demonstrated in Figure 5.3 using the moving average method and in Figure

5.3b using spline smoothing. These plots correspond to a vertical slice through

the full periodogram estimates. The full periodograms smoothed over time

using a smoothing window of width 30 are plotted in 5.3c and 5.3d. The

variations in the signal are identified clearly in the periodogram estimates.

Estimation of the lifting peridograms was conducted using the Adlift package
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Figure 5.2: Simulated time series with irregular spacing. The mean sampling
rate is 2 and the series contains oscillations with periods 25 and 80. The middle
section between the vertical lines contains oscillations at both frequencies.
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Figure 5.3: Estimating the periodogram ordinates for a given time point, x200,
using a) the average in each group b) nonparametric regression with splines.
Estimation of the periodogram using c) moving average d) splines. All esti-
mates are smoothed over time using a smoothing window of 30.
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5.3. Relationship to Fourier frequency

(Nunes and Knight, 2008) and the NLT package (Knight, 2008).

5.3 Relationship to Fourier frequency

Section 5.7 uses the lifting periodogram methodology to examine time series

with physically meaningful variations in frequency. It is therefore important to

understand the physical meaning of artificial scale as defined by wavelet lifting.

This section contributes to the existing methodology by presenting new work

on the relationship between wavelet lifting scale and Fourier frequency.

As previously described, the scale of each wavelet coefficient obtained from

the one coefficient at a time lifting scheme is given by the integral of the scaling

function at the last stage before the point is removed from the algorithm. At

level n of the lifting transform, the integral of point jn is given by
∫
R φn,jn(x)dx.

This accounts for the length of the sampling interval between points. For

example, at the first stage of the algorithm the scaling functions are given by

φn,k(xi) = δi,k and the intervals associated with each grid point are constructed

using the midpoints between successive grid points. The integral of point x2

will therefore be x3−x1
2

.

The initial definition of the integrals of each coefficient remains unchanged

no matter which prediction scheme is used in the lifting algorithm. However it

is not necessarily the case that different lifting schemes will provide the same

relationship between scale and frequency. For example, consider the case of

linear prediction with either 1 or 2 neighbours either side. Removal of any

given point using 2 neighbours either side will provide larger scale information

than removing the point using one neighbour either side; this is because we are

considering a larger overall interval of the data. The wavelet lifting scale there-

fore does not have a consistent relationship to frequency across different lifting

schemes. To provide a detailed description of the relationship between wavelet

scale and Fourier frequency, we start by considering the case of periodogram

estimation using linear prediction with one neighbour either side.
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Chapter 5. Periodogram estimation for irregular situations using wavelet
lifting

Relationship between integral and scale: 1 neighbour

To determine the relationship between OCAAT lifting scale and Fourier fre-

quency, we consider estimating the wavelet coefficients of a pure sinusoid us-

ing linear prediction with one neighbour either side. Assuming that the two

neighbours are equidistant from the point that is being removed, the wavelet

coefficient produced on removal of the point indexed jn is given by

djn = cn,jn −
∑
i∈Jn

ani cn,i,

= sin
(2πxjn

P

)
− 1

2
sin
(2π(xjn + In−1,jn)

P

)
− 1

2
sin
(2π(xjn − In−1,jn)

P

)
,

where P is the period of the wave and the point jn has coordinates (xjn , cn,jn),

and integral In−1,jn . Note that since we assume that the two neighbours are

both the same distance from the removal point, the prediction weights are

given by ani = 1/2 for i ∈ Jn, the set of neighbours.

For a signal of period P , the resulting detail coefficient, djn , depends on

the location, xjn , and the value of the integral, In−1,jn = αjn , and so we can

write

|djn| = d(xjn , αjn) for jn ∈ Dn. (5.5)

where Dn is the set of indices of wavelet coefficients at scale n. In what follows

we consider the general case, rather than specific removal locations xjn and

so the subscripts in equation (5.5) are dropped, to give d(x, α). Taking the

arithmetic average over x for each value of α we obtain

d(α) for α ∈ R+. (5.6)

The relationship between wavelet lifting scale and Fourier frequency can

be described using the value of α that maximises this quantity. The value of

α that maximises equation (5.6) corresponds to the scale of the periodogram

at which we see a peak in the wavelet coefficients for a signal of period P ,
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Figure 5.4: Relationship between the integral and associated detail coefficients
using one neighbour either side linear prediction and a sine wave of period 10.
Removing the point marked with the blue cross it is clear that the largest
coefficient will be obtained by considering an integral of 5.

hence providing a relationship between wavelet scale and Fourier frequency.

Predicting using linear prediction with one neighbour either side provides the

relationship

{α : d(α) ≥ d(β), β ∈ R+} =
P

2
± nP, (5.7)

where the nP term occurs as a consequence of aliasing. This relationship can

be verified intuitively by inspection of Figure 5.4, which clearly shows that the

largest wavelet coefficients are obtained by considering an integral of P/2.

Effect of uneven sampling: 1 neighbour

We now consider relaxing the assumption that the two neighbours are equidis-

tant from the removal point. Even if the test data set is regularly sampled,

the equidistant sampling will not be preserved after the first point has been

removed. Consider the case where the distances of each neighbour from the

removal point, jn, are given by d and βn,jnd. Here βn,jn is the scaling of the

shortest to longest side so that βn,jn ≥ 1. For schemes using linear prediction

with one neighbour either side the quantities βn,jn and d are related to the
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Chapter 5. Periodogram estimation for irregular situations using wavelet
lifting

integral of the removal point through the relationship d = 2In,jn/(1 + βn,jn).

This measure is also related to the regression weights, ani , i ∈ Jn, and hence

the form of the resulting wavelet (see Figure 5.5). Note that for any given

point the associated ‘measure of asymmetry’, βn,jn , will vary throughout the

algorithm depending on the spacing of the remaining points, which in turn

depends on the trajectory.

Figure 5.6 shows the average value of the wavelet coefficients against scale

for different amounts of asymmetry, β. As the measure of asymmetry increases,

the coefficients are more likely to peak at scales other than P/2. Therefore

the effectiveness of α as a measure of scale is dependent on the sampling of

the data. For values of β ≥ 2 we often see the peak of coefficients at a scale

of α = P rather that α = P/2 as with equispaced points. This results in a

‘blurring over scale’ in the resulting spectrum.

In Figure 5.7 we demonstrate this effect using the simulated example from

Section 5.2. Here we plot the complete lifting spectrum (Figure 5.7a) and the

lifting spectrum decomposed according to the degree of asymmetry of the co-

efficients. The left hand axis of the plot indicates the (log) wavelet lifting scale

and the right hand axis provides a guide for the equivalent Fourier period as

implied by equation (5.7). For this plot the detail coefficients that are used

to form the periodogram are split into three equal sized groups, according to

their measure of asymmetry as defined by β. We therefore form three differ-

ent periodograms which are constructed from detail coefficients with varying

measures of asymmetry. Figure 5.7b contains the ‘least asymmetric’ third of

coefficients, Figure 5.7d contains the ‘most asymmetric’ third of coefficients

and 5.7c shows the remainder. The plot of all coefficients (a) can be found by

combining plots b, c and d. Comparing plots 5.7b and 5.7d, we see that 5.7b

provides a much clearer description of the series, eliminating the artifacts at

higher scales. Overall we see that the detail coefficients that have asymmetri-

cally placed neighbours often peak at a different scale and result in a blurring

of the periodogram.
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Figure 5.5: Effect of uneven sampling on the form of the resulting wavelet.
Here demonstrated for the removal of a point with an integral of 5. The
resulting wavelet for β = 1 is shown in blue and for β = 10 in red.
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Figure 5.6: Average value of the squared detail coefficients, d(α)2, against scale,
α, for a sinusoid with period P . The different lines represent an increasing
degree of asymmetry in the sampling: β = 1, 1.5, 2, 3, 4.
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Figure 5.7: Lifting periodogram of the simulated time series illustrated in
Figure 5.2, decomposed according to the degree of asymmetry of the neighbours
(β) involved with production of each coefficient: a) all detail coefficients b)
detail coefficients that satisfy β ≤ 1.45 c) coefficients that satisfy 1.45 < β ≤
2.45 and d) coefficients that satisfy β > 2.4.
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5.3. Relationship to Fourier frequency

Relationship between integral and scale: more than one neighbour

If more than one neighbour is used in the linear prediction scheme, the maxi-

mum absolute value of the coefficients is no longer achieved at a scale of P/2.

Predicting using two neighbours either side of the removal points gives a rela-

tionship to Fourier frequency of {α : dN2(α) ≥ dN2(β), β ∈ R+} = 0.29P and

for three neighbours either side we have {α : dN3(α) ≥ dN3(β), β ∈ R+} =

0.20P . Figure 5.8 shows the average value of the squared coefficients accord-

ing to integral for 1, 2 and 3 neighbours either side of the prediction point and

assuming a regular spacing of points.
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Figure 5.8: Average value of the squared detail coefficients, d(α)2, against scale,
α, obtained with a linear prediction scheme for different sizes of neighbourhood.

Choice of prediction scheme

It is possible to choose the prediction scheme according to the properties of

the data or the aims of data analysis. For our analysis, we concentrate on one

neighbour either side linear prediction. The use of linear prediction ensures

that the prediction weights are positive. As described in Section 2.2.2 this en-

sures that scale is a monotonically increasing function of the index and hence

an intuitive measure of scale. The inclusion of negative weights is problematic
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Chapter 5. Periodogram estimation for irregular situations using wavelet
lifting

for spectral estimation as it is possible to obtain negative scales. Choosing to

use just one neighbour either side of the removal point ensures a good relation-

ship to frequency with less blurring over scale than with a prediction scheme

with more neighbours. This is illustrated in Figure 5.8 by the pronounced peak

of the one-neighbour-either-side scheme. It is also feasible to use adaptive pro-

cedures as in Nunes et al. (2006) but since the choice of prediction scheme

affects the relationship between scale and frequency it could be problematic to

mix prediction schemes when constructing the periodogram.

5.4 Unblurring the periodogram

In order to produce clear visualisations of the data, we now consider methods

of dealing with the ‘blurring over scale’ that is caused by the inclusion of

asymmetric prediction values in the transform. As shown in Section 5.3, when

the detail coefficient is obtained using neighbours which are not equidistant

from the removal point, it is possible to see a peak in the periodogram at a

different scale. Note that this is different to the bias of the regular NDWT

periodogram that was introduced in Section 2.3.4. A bias equivalent to the

regular NDWT periodogram bias is also present in the lifting periodogram,

and is discussed further in Section 5.5. Three different methods for unblurring

the periodogram are considered.

1. It is possible to remove the detail coefficients associated with asymmet-

ric prediction points by setting a cut-off value for βn,jn denoted βcut.

Though this results in a loss of information, it ensures that only detail

coefficients with a well defined relationship to frequency are included in

the periodogram.

2. Only a small set, P , of the T ! possible trajectories, Tp, of observation
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5.4. Unblurring the periodogram

removal orders are actually utilised in the NLT lifting scheme. It is

therefore possible to choose a subsample of these trajectories which min-

imises the number of detail coefficients with βn,jn > βcut. To do this,

we choose the elements of the trajectory Tp as the algorithm proceeds,

rather than generating a random removal order a priori. At each stage

of the algorithm, remaining points are split into two groups, according

to whether the value of βn,jn is above or below the cut off point, giving

P 1
n = {xi : βn,i ≤ βcut} and P 2

n = {xi : βn,i > βcut}. The point to be re-

moved, xon , is selected by randomly sampling from P 1
n or if P 1

n = ∅, then

a point is randomly selected from P 2
n . This way, points with βn,jn > βcut

can still be removed at the end of the algorithm. Though there is still

some loss of information, the number of detail coefficients cut in the final

stage will be reduced. The points in P 1
n and P 2

n will change throughout

the algorithm depending on the removal order of points.

3. The assignment of βn,jn to the point xjn is based on the nearest neigh-

bours either side of xjn . To ensure that βn,jn < βcut it is also possible

to search combinations of different neighbours of xjn to find a pair that

produces a prediction with βn,jn < βcut. The update step of this ap-

proach is not intuitive, as it involves updating points that are not next

to the removal point, and so the value of the resulting updated integrals

will not intuitively represent the sampling. To overcome this problem we

discard the ‘in between’ observations. This is equivalent to performing

the lifting algorithm on a subsampled set of the original points. To min-

imise the amount of discarded information, only variations of neighbours

that will result in one point being discarded will be considered, and so in

some situations it is not possible to find combinations of neighbours that

produce coefficients with βn,jn < βcut. In these cases, the point is lifted

as normal, using the original neighbours, and the resulting coefficients

are removed at the end of the algorithm.
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The three different unblurring techniques are compared using a simulated

example of an irregularly sampled sine wave. The signal has a period of 20

kyr, and the sampling is taken to be the same as that of the composite carbon

dioxide series used in Section 5.7, between−100 kyr and−300 kyr BP, ensuring

that the example provides a realistic trial for our chosen application.

The resulting periodograms using methods 1-3 are shown in Figure 5.9a-c.

Here we have estimated the periodograms using 5000 trajectories, discretised

using 20 scales between 10 and 16, and smoothed over time using a window of

width 10 kyr. In order to compare the efficiency of the different methods, we

also record the number of detail coefficients that are computed but not used

in the final periodogram estimates. The proportion of used information (after

using the βn,jn ≤ βcut cut off at the end of the algorithm) for the three different

methods is 0.59, 0.78, 0.55. For the third method this figure includes points

that have been discarded due to the irregular sampling. Not including these

points, the proportion of used information out of all the lifted (not discarded)

points is 0.72.

The second method shows a clear improvement in the proportion of infor-

mation that is being used in the final periodogram estimate; however we see

that the resulting periodogram has missing observations at certain time points.

From Figure 5.9d we see that the gaps in the periodogram correspond to ar-

eas of the series which contained a cluster of points with a high value of βn,jn .

The method is effective for series which exhibit a uniform initial distribution of

points with βn,i > βcut, but if this is not the case then there may be gaps in the

estimated periodogram. Method 2 is therefore not suitable for our application,

but provides an efficient solution in other situations. Both the first and third

methods produce clear estimates of the periodogram but, since the proportion

of used information is similar, we choose to use the simpler algorithm 1.
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Figure 5.9: Different methods for unblurring the assymetric periodogram: a)
setting a cut-off value of βcut = 2.5 b) favouring the removal of symmetric
points c) searching for symmetric neighbours d) value of β for initial points.
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5.5 Relationship between the NLT periodogram

and the EWS

In Chapter 2 it was seen that the NDWT periodogram provides a biased esti-

mate of the evolutionary wavelet spectrum. This bias causes a leakage across

scales in the raw periodogram estimates but can be corrected by application

of the inverse wavelet inner product matrix. Knight et al. (2010) propose

an equivalent correction procedure for the NLT periodogram, based on the

relationship between the NLT periodogram and the evolutionary wavelet spec-

trum.

In the formulation of Knight et al. it is assumed that the observed series

can be modelled as LSW processes (as described in Definition 2.3.4) but with

missing values. The appearance of each time point in the final data set is

modelled as It ∼ Bernoulli(p) where 1−p is the probability that any given point

is missing from the observed signal. Based on the LSW model formulation,

Knight et al. find the expectation of the NLT periodogram in terms of the

EWS:

Theorem 5.5.1 (Knight et al. (2010)). For the wavelet periodogram estimators

f̂xk,T , and for i ∈ 1, ..., J∗, k ∈ 1, ..., n we have

E(f̂xk,T (li)|fixed paths) = Trace(Al
i,kST ) +O(T−1),

where S = (Sl,j)l≤−1,j∈1...n with Sl,j = Sl(xj/T ), Al
i,k = (al

i,k
l≤−1,j∈1...n) with

al
i,k =

∑n
j′=1{

∑m
α=1 Kα(li)rαk,jr

α
k,j′}Ψl(xj − xj′), rαk,j are elements of Rα intro-

duced in equation (5.1), and {Kα(·)}α are as defined in equation (5.3). The

expectation is conditioned on the removal trajectories being fixed.

This shows that the raw periodogram is not an unbiased estimator for the

spectrum. Based on this formulation, Knight et al. also propose a correction

procedure for removing the bias.
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Although this methodology provides a promising framework for certain sit-

uations, the correction procedure is computationally intensive and application

to the long palaeoclimate series considered in this chapter is therefore prob-

lematic. The method depends on the observed data being of the ‘regular with

missing observations’ type, or at least requiring that the signal can be well

approximated by this framework. An intrinsically irregular time series can be

transferred to a regular grid with missing observations by imposing a regular

grid structure with the sampling rate equal to the highest common denomina-

tor of the observed irregular sampling differences. However in many situations

this imposed regular frame will be very sparse (in terms of the ratio of ob-

served to missing values). Also the initial assumption that the appearance of

missing values will follow a Bernoulli distribution will also not hold in many

cases. In the case of most palaeoclimate series, the observed sampling rate is a

function of time. The application of this correction method to the time series

considered in this chapter would be an interesting advancement in future work,

but at the moment we omit this extra step.

Another interesting point, is how the correction procedure of Knight et al.

compares to our proposed method of removing coefficients associated with

asymmetric prediction weights. The method we propose arises from the ability

of the lifting integral to act as a measure of scale. In contrast, Knight et al.

assume the model is constructed from nondecimated wavelets (from the LSW

construction) with a known frequency relationship and so it does not consider

this cause of leakage.

5.6 Empirical mode decomposition

In this section we introduce another function decomposition method: empirical

mode decomposition (EMD). As we shall see in Section 5.7, EMD provides an

interesting comparison to the wavelet lifting methodology emphasised in this

chapter. Since we are interested in EMD from a comparative perspective, our
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treatment of the technique consists of a review of the existing literature rather

than contributing to any methodological advancements.

Empirical mode decomposition (EMD) was introduced by Huang et al.

(1998) and provides a method of adaptive time series decomposition suitable

for non-linear, non-stationary and irregularly sampled time series. EMD is

used to decompose the original function into a collection of intrinsic mode

functions (IMF). With the methods we have introduced so far (DFT, DWT,

wavelet lifting) the signal is decomposed with respect to a set of pre-defined

basis vectors. EMD differs from these methods in that the basis is dependent

on the observed signal. We now introduce the EMD procedure and discuss

some of the issues related to its application.

The decomposition procedure

We start by defining intrinsic mode functions (IMFs). These are extracted

from the raw signal using a procedure known as sifting which is introduced

subsequently.

Definition 5.6.1 (Huang et al. (1998)). An intrinsic mode function (IMF) is

a function that satisfies two conditions:

1. In the whole data set the number of extrema and the number of zero

crossings must either be equal or differ by at most one.

2. At any point the mean value of the envelope defined by the local maxima

and the envelope defined by the local minima must be zero.

Each IMF represents a single oscillatory mode. An IMF is therefore com-

parable to a single Fourier harmonic but is more general as IMFs may contain

frequency and amplitude modulations (Huang et al., 2003). Most observed

time series are not IMFs, instead the data at any one time may involve more

than one oscillatory mode. Motivated by this, Huang et al. (1998) introduce

the EMD sifting procedure to decompose the observed data, X(t), into a set

of IMFs. The sifting process consists of the following steps:
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1. The local extrema of X(t) are identified. These are then used to define

the upper, lower and mean envelopes as follows

a) The local maxima are connected to form the upper envelope emax(t).

b) The local minima are connected to form the lower envelope emin(t).

c) The mean of the envelopes is defined as m1(t).

2. The difference between the data and m1(t) is calculated. This forms the

first component:

h1(t) = X(t)−m1(t).

These steps are illustrated in Figure 5.10 a and b. Ideally h1(t) would be

an IMF, but in practice this is generally not the case and more than one sifting

step is required to extract each mode. If h1(t) does not fulfill the IMF criteria of

Definition 5.6.1 then the sifting process is repeated. Treating h1(t) as the data

we obtain h11(t) = h1(t)−m11(t). The sifting process is repeated k times until

the component h1k(t) given by h1k(t) = h1(k−1)(t) −m1k(t) satisfies the IMF

requirements. The first IMF component is therefore given by: c1(t) = h1k(t).

This should contain the finest scale (or shortest period) component of the

signal and is separated from the original data using

r1(t) = X(t)− c1(t).

The residue still contains information about longer period components and so

is then treated as the new data and subjected to the same sifting process. This

procedure is then repeated on all subsequent residuals:

r2(t) = r1(t)− c2(t), ..., rn(t) = rn−1(t)− cn(t),

until the predetermined stopping criteria is reached. At this stage the data

has been decomposed into a set of IMFs and a residual term
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X(t) =
n∑
i=1

ci(t) + rn(t).

where the residual can be interpreted as the mean trend of the data. The sifting

process serves two purposes: Firstly to ensure that each IMF contains only one

mode of oscillation, and secondly to smooth uneven amplitudes, making them

more symmetric with respect to zero. This introduces the crucial question of

when to stop sifting. Due to the second effect, over sifting can lead to pure

frequency modulated signals with constant amplitude, obliterating the phys-

ically meaningful amplitude modulations. To preserve the natural amplitude

variations of the IMF, the sifting procedure must be limited to as few steps as

are mathematically permissible while still ensuring that each IMF satisfies the

necessary conditions.

Stopping criteria for producing an IMF

The criterion for stopping the sifting process and designating the resulting

component an IMF is of key importance. The number of sifting steps must

be balanced between under-sifting and obtaining a false IMF, and over-sifting

which renders the resulting decomposition less physically meaningful. In our

implementation we use the criterion |mk(t)| < tol for all t, from Kim and Oh

(2009), which directly relates to the criteria that the mean of the upper and

lower envelopes must be zero. For other possible choices of stopping criteria

see e.g. Huang et al. (1999).

Envelope estimation

The upper and lower envelopes are calculated as interpolated curves between

extrema. It is generally recommended that cubic splines be used for this inter-

polation, as other methods tend to increase the required number of iterations

and lead to over decomposition (Rilling et al., 2003). However this remains

an area of active research, for example Pegram et al. (2008) propose a method
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Figure 5.10: Example of EMD decomposition using a small section of the
orbital forcing data introduced later in Section 5.7.2. a) Estimation of the
upper and lower envelopes, b) Difference between the data and the mean of
the envelopes. This is not an IMF so the sifting process is repeated. c) Final
IMF decomposition.
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based on rational splines and flexible treatment of the end conditions.

The issue of IMF selection

EMD is essentially defined by an algorithm and different IMF sets can be

generated by using different parameters in the algorithm. As discussed in

Huang et al. (1999), they all represent the truth approximately, while some

might be closer to the truth than others. The problem of how to optimise the

procedure to produce the best IMF set remains an open problem (Huang et al.,

2003). The orthogonality index was introduced by Huang et al. (1998) and can

be used to reject IMF’s that are grossly non-orthogonal. The orthogonality

index is given by

IO =
T∑
t=0

n+1∑
j=1

n+1∑
k=1

cj(t)ck(t)

X2(t)
. (5.8)

If the decomposition is orthogonal then the cross terms should be zero; hence

an orthogonality index of close to zero indicates a decomposition that is close

to orthogonal.

Intermittence

Problems in the EMD procedure can occur when the variations in the signal

are of an intermittent nature. Intermittence in the observed signal commonly

leads to ‘mode mixing’ in the EMD decomposition: a single IMF can consist of

oscillations of widely different scales and hence cease to have physical meaning.

Mode mixing is the main reason for instability in the EMD decomposition (Wu

and Huang, 2009). In this context instability means that any small change

can result in a new set of IMFs and hence the procedure suffers from a lack of

uniqueness.

Huang et al. (2003) suggest a way to overcome the problem of mode mixing

by restricting the frequency range of each IMF, implemented by limiting the

distance between successive maxima. However as noted by Wu and Huang

120



5.6. Empirical mode decomposition

(2009), this is based on a subjectively selected scale and with this intervention

the EMD ceases to be totally adaptive. Also, the subjective selection of scales

works only if there are clearly definable and separable timescales in the data.

An alternative method to prevent mode mixing, ensemble empirical mode de-

composition, was introduced by Wu and Huang (2009). The method is based

on the observation that mode mixing causes instability, and an important issue

is therefore whether the decomposition is sensitive to noise. This method is

reviewed in further detail later.

Sampling

The EMD formulation assumes that the signal is described in continuous time,

but in practice it is implemented on a discrete time signal. The sampling of

the signal is therefore expected to affect the results of the decomposition in

some way. EMD relies on the correct identification of signal extrema, and

the extrema of a sampled signal are not necessarily the same as those of the

underlying continuous time function (Rilling and Flandrin, 2009). For example

Rilling et al. (2003) show that even for a pure tone, EMD may not extract the

single mode correctly if the sampling period is insufficient.

Extensions to basic algorithm

There have been many suggestions on possible extensions to the basic EMD

methodology, attempting to compensate for the described issues of mode mix-

ing and sampling rate. We now briefly describe two interesting advancements

to the original algorithm. Although these extensions are not considered in the

results of the chapter, the ideas provide an interesting foundation for generat-

ing robust EMD decompositions of palaeoclimate signals.

Ensemble empirical mode decomposition (EEMD) was introduced by Wu

and Huang (2009). Using EEMD the true IMF components are defined as

the mean of an ensemble of trials, each consisting of the signal plus a finite

amplitude white noise. This approach is motivated by the studies of Flandrin
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et al. (2004) and Wu and Huang (2004), showing that EMD is effectively

an adaptive dyadic filter bank when applied to white noise. When a signal

is added to white noise, the components of the signal at different scales are

automatically projected onto proper scales of reference established by the white

noise in the background. Though each individual trial may produce noisy

results, given enough trials (with different white noise realisations), the noise

with be cancelled out in the ensemble mean. Wu and Huang (2009) show that

EEMD can be used to eliminate the mode mixing problem, preserving the

physical uniqueness of the decomposition.

Another variation on the classical EMD implementation is the Local EMD

algorithm (Rilling et al., 2003). The standard EMD sifting procedure is applied

to the full length of the signal and continues until the stopping criterion has

been met. However Rilling et al. (2003) note that this can lead to over-sifting

on the whole signal for the sake a better local approximation in isolated regions.

This can contaminate other parts of the signal by uniformising the amplitudes

and over decomposing the signal by spreading out components over adjacent

modes. To overcome this problem Rilling et al. (2003) introduce an intermedi-

ate step into the sifting process: Local zones where the error remains large are

identified and isolated so that extra iterations are applied only to these regions.

EMD provides a data-driven decomposition method which is well suited to

our application of nonstationary and irregularly sampled time series. As high-

lighted by this brief description there are issues with the application of EMD

due to the non-uniqueness of the resulting decomposition and its sensitivity

to sampling rate and noise. However under certain circumstances EMD can

be used to provide extremely effective time series decompositions. The use

of EMD, as well as its limitations, is demonstrated in Section 5.7. Here our

emphasis is on comparison with wavelet lifting periodogram estimation. We

demonstrate the advantages and disadvantages of both methods, and show

how they can be used to complement each other.
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5.7 Application to palaeoclimate time series

This section examines the use of wavelet lifting to estimate the periodogram

of palaeoclimate data and compares the results to those obtained using EMD.

We consider a composite 800 kiloyear (kyr) carbon dioxide series and also an

orbital forcing time series which describes the effects of astronomical parame-

ters. Before applying both methods to the data, we first provide a background

to the subject area and briefly describe each data set.

A climate forcing is a change imposed on the Earth’s energy balance that

typically causes a change in global temperature (McGuffie and Henderson-

Sellers, 2005). Climate forcings can be considered in two categories: External

and internal climate forcings. Internal forcings are due to variations in the

components of the climate system, e.g. changes in carbon dioxide levels or

volcanic eruptions. External forcings, as considered in this section, are caused

by variations in agents outside the system. We shall be considering the forcing

effect caused by changes in astronomical parameters.

A decisive advance in the astronomical theory of palaeoclimates came from

Milankovitch’s theory of insolation (Milankovitch, 1969). The theory states

that ice ages are a consequence of variations in the amount and distribution

of solar insolation. Note that the distribution of insolation is likely to have a

marked affect on climate due to the differing proportion of landmass to ocean

in the Northern and Southern hemispheres. There is a general acceptance that

the Milankovitch theory of insolation is at least partly correct, substantiated by

the fact that geological records have been shown to exhibit spectral properties

similar to those of astronomical phenomena (Roes and Allen, 1999). However

the exact nature of the climate’s response to the orbital parameters still leaves

many unanswered questions. For example throughout the last 500 kyr the

climate has been characterised by a strong 100 kyr cycle. This cycle shows

an 80 kyr build up of ice followed by a 20 kyr termination and hence is often

described as a ‘saw tooth’. Looking back further than 1 myr BP, the dominant
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period of variation was 41 kyr and the reason for this switch in the predominant

period is unknown (Augustin et al., 2004). The detection of astronomical

frequencies from geological records and comparison with the driving force from

orbital parameters is crucial to establishing the mechanisms behind climate

variations.

5.7.1 Characteristics of palaeoclimate data

There are many different sources that can be used to extract palaeoclimate

time series; tree rings, marine sediments and ice cores are amongst the most

popular. We shall be concentrating on the analysis of data from ice cores,

but many of the characteristics of ice core records (e.g. uneven sampling)

are also shared with other palaeoclimate series. A detailed summary of the

characteristics and importance of ice core records is given by Wolff (2005).

Time series obtained from ice cores are characterised by an uneven sam-

pling rate. This is because deeper down the ice core the snow/ice is under

a stronger mass pressure, resulting in depletion, pinching and swelling of the

layers (Witt and Schumann, 2005). Equidistant sampling along the depth of

the core therefore leads to a coarsening of time resolution with increasing age.

Isotope-based age estimates also cause uncertainties concerning the age axis

of ice-core records, with the uncertainty increasing as the age of the samples

increases. In general, though, ice-cores are well-dated (Wolff, 2005) and so for

the purpose of this analysis we shall not attempt to make any modifications for

the presence of dating uncertainty in the series. Our main focus is in providing

a method that makes direct use of the irregularly sampled observations.

Ice-cores are a very important resource for the study of past climate change.

One of their main advantages is that they contain information on many dif-

ferent environmental variables. The isotopic content of the water molecules

can be used as a proxy for temperature. It is possible to use the oxygen iso-

topic ratio (18O/16O), or the hydrogen isotopic ratio (2H/ 1H) of deuterium to
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normal hydrogen. These proxies are generally labelled δ18O and δD. The two

isotopic ratios represent different mechanisms related to temperature; δ18O re-

flects changes in global ice volume and the hydrological cycle (Petit et al., 1999)

and δD reflects local temperature via the amount of deuterium in precipita-

tion. The overall result is that colder temperatures lead to water that is more

depleted in the heavier isotopes (Wolff, 2005). The relationships are roughly

linear over temperature, with 18O decreasing by 0.7 0/00 (parts per thousand)

and 2H decreasing by 5.6 0/00 for each 1◦C temperature decrease (McGuffie

and Henderson-Sellers, 2005, Section 1.2.3). In Section 6.4 we consider the

relationship between these two climate proxies.

Ice-cores also provide direct records of past changes in atmospheric trace-

gas composition via air bubbles entrained in the ice. Unlike the isotope records,

these measurements are not proxies. One issue with these records is that

the bubbles form at a depth just below the surface, and the air takes just

a few years to diffuse to that depth (Wolff, 2005). Direct records from air

bubbles trapped in the ice therefore have a different depth-age relationship to

measurements taken directly from the ice itself. At a given depth along the ice

core, measurements taken from the ice (e.g. δD, δ18O) will relate to an older

time period than those of the trace gases sampled at the same depth. This

creates issues and uncertainties when looking at the phasing between climate

proxies and trace gas changes.

In our analysis we consider a composite carbon dioxide series that dates

back roughly 800 kyr, from 137 yrs BP to 797099 yrs BP where BP stands for

before present (‘present’ is conventionally set to be 1950). The series consists

of data from the EPICA Dome C and Vostock ice core projects (see Lüthi

et al. (2008) and Petit et al. (1999)), and was obtained from the World Data

Center for Paleoclimatology, NOAA Paleoclimatology Program, Boulder. The

sampling of the data is highly irregular with sampling intervals ranging from

9 yrs to 6029 yrs.
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5.7.2 Orbital forcing data

Astronomical theory is built on the hypothesis that climate is somehow deter-

mined by the seasonal and spatial distribution of insolation (Crucifix et al.,

2006). There are three main components to the orbital forcing of climate:

precession, obliquity and eccentricity. Berger (1978) provides trigonometrical

expressions for these components, which together provide a time series of the

astronomical effects on climate which we can then compare to the palaeocli-

mate records. Note that this series is derived directly from Newtonian me-

chanics of the solar system, rather than from observed records.

We now give a brief summary of the components of the orbital forcing

signal. Further details on the calculation of these components can be found in

the original paper (Berger, 1978) and the review of Crucifix et al. (2006). The

astronomical effects on climate present in the orbital forcing time series are:

• Climatic precession is characterised by the movement of the perihelion

(when the Earth is closest to the sun) with respect to the moving vernal

equinox. It is due to two effects; the general precession (or wobble) of the

Earth’s axis of rotation, and the rotation of the Earth’s elliptical figure

with respect to the stars. Combined, the climatic precession has four

dominant periods (23.7,22.4,18.9,19.1), with a mean period of roughly

21 kyr.

• Obliquity is the angle of tilt of the Earth’s axis and is responsible for

the seasons (Crucifix, 2008). When the obliquity increases, the ampli-

tude of the seasonal cycle in insolation increases, with summers in both

hemispheres receiving more energy and the winters less energy. As a re-

sult, it is assumed that the winters become colder and summers warmer.

Obliquity varies between 22◦ and 25◦ with a period of roughly 41kyr.

• Eccentricity is the orbital deviation from circular. There are five domi-

nant modes (404,95,124,9,131) with a 100 kyr combination of periods.
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Neither precession nor obliquity modifies the total amount of energy reaching

the Earth in a year. Eccentricity does, but the effect is small (Crucifix, 2008).

Since the effect of eccentricity is weak relative to the signals of obliquity and

precession, if the response of the climate to the astronomical forcing parameters

is linear then we would expect the 100-kyr signal in the data to be of negligible

intensity (Mélice et al., 2001). However, as already noted, for the last 500 kyr

the climate has been characterised by a strong 100 kyr signal. Nonlinear

processes within the climate system have been proposed as the origin of the

100 kyr cycle (see Mélice et al. (2001), Crucifix and Rougier (2009)).

Given the quantification of these astronomical forcing effects by Berger

(1978), we can use the generated time series to estimate the lifting peri-

odograms. These can then be compared with the periodograms observed from

the palaeological observations. Since the composite carbon dioxide record is

observed on an irregular grid, we consider the orbital forcing data at the same

irregular time points. Note that the orbital forcing time series is calculated

from first principles and so, unlike the observed ice-core time series, does not

contain observation and dating uncertainty. We also know the major frequen-

cies of variation that are present in the data, allowing us to judge accurately

the success of each method. For these reasons the orbital forcing time series

acts as a good test data set.

The main aim of our analysis is to improve on the results of methods

that rely on pre-processing the data to a regular grid. In particular, we are

interested in noting if there is any high frequency information present in the

series that has not previously been detected due to the loss of information

at these scales. The detection of high frequency harmonics would be very

interesting and could potentially lead to the verification/rejection of differing

theories of glaciation. This is one of the issues being investigated in the ITOP

(Integrating Theory and Observations over the Pleistocene) project led by Dr.

Michel Crucifix.
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5.7.3 Analysis

The lifting periodograms of each series were estimated using one neighbour

either side linear prediction, forming the periodogram using 40 artificial scales,

and smoothing the periodogram estimates over time using a window of 10 kyr.

The orbital forcing signal, carbon dioxide record and corresponding wavelet

lifting periodograms are shown in Figure 5.11. From the periodogram of the

orbital forcing data the 21 kyr precession cycle is clearly visible. The signal

shows a ‘beating’ over time due to the combination of tones. The lifting

periodogram of the carbon dioxide data shows a 100 kyr signal which is most

pronounced in the middle of the signal, when the amplitude of the orbital

forcing signal is at its lowest.

The EMD decompositions of each signal were also considered, using an IMF

stopping tolerance level of |mk(t)| < 0.1752σX for all t, where σX is the stan-

dard deviation of the series. The envelopes were estimated using splines and

the edge effects were dealt with by mirroring the end values. From the EMD

decomposition of the orbital forcing data (Figure 5.12) we can clearly distin-

guish the different components of the signal: IMF 1 contains the precession

component, IMF 2 contains the obliquity, and IMF 3 contains the eccentricity.

The orthogonality index of the decomposition, as calculated using equation

(5.8), is 0.097, indicating that the decomposition is close to orthogonal. The

decomposition is also robust to changes in the options of the algorithm.

Two possible EMD decompositions of the carbon dioxide data are shown

in Figure 5.13. The first decomposition is constructed using the same choices

in the algorithm as with the orbital forcing example, while for the second de-

composition the tolerance limit for the stopping criteria has been reduced to

|mk(t)| < 0.1252σX . The corresponding lifting periodograms of the two decom-

positions are shown in Figures 5.14 and 5.15. These results appear difficult to

interpret, in that we can not readily attribute known physical phenomena to

the resulting IMFs. Unlike the orbital forcing data, the carbon dioxide series
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is sensitive to changes in the algorithm components – small changes result in

large differences in the resulting decomposition, particularly for the coarser

scale IMFs. The orthogonality index for the first decomposition is very high

at 0.228. Lowering the tolerance level to 0.1252σX results in a decomposition

with an improved orthogonality index of 0.019, but the decomposition has a

larger number of IMFs and does not improve the overall interpretation of the

decomposition. The results are still promising, for example it appears that

IMF 4 is may be capturing part of the precession signal, but further work on

a robust method is needed. It is also important to note that carbon diox-

ide responds indirectly to insolation and that many lags and feedbacks are

involved.
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Figure 5.11: Time series (left) and wavelet periodograms (right) for the orbital
forcing and carbon dioxide signals.
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Figure 5.12: IMF decomposition (left) and associated lifting periodograms
(right) for the orbital forcing data.
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Figure 5.14: Lifting periodograms of the IMF components for the carbon diox-
ide data, decomposed using a tolerance level of 0.1752σX .
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Figure 5.15: Lifting periodograms of the IMF components for the carbon diox-
ide data, decomposed using a tolerance level of 0.1252σX .
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5.8 Method comparison

From the wavelet lifting periodogram of the orbital forcing data the 21 kyr pre-

cession cycle was clearly visible. Considering the EMD decomposition of the

original signal we also observe other characteristics: the 41 kyr signal of obliq-

uity (IMF 2) and the 100 kyr signal of eccentricity (IMF 3). These are clearly

visible from the lifting periodograms of the individual IMF but the coefficients

are of considerably lower magnitude than from IMF 1 which contains the pre-

cession component. Summing the periodograms of all the individual IMF (plus

the residual term) provides the periodogram of the original series and so all

this information is essentially contained within the lifting periodogram of the

full series; however the coefficients of the obliquity and eccentricity signals are

masked by those of the precession component. In this case, EMD provides a

more informative decomposition of the series than obtained by wavelet lifting

and highlights the limitations of the wavelet lifting periodogram methodology.

For the carbon dioxide time series the EMD decomposition is less convinc-

ing and a more complete picture of the overall characteristics of the data is

observed from the lifting periodogram of the full series. The orbital forcing

and carbon dioxide signals are observed on the same irregular time grid and

the main difference in characteristics between them is the presence of noise in

the carbon dioxide data. Since the basis of the EMD decomposition is derived

from the data, signal extraction using EMD can be problematic as noise levels

increase (Kijewski-Correa and Kareem, 2007). The basis is dependent on the

observed signal and in the presence of noise this means that the basis is also

affected by the noise.

Through the use of EMD we can recognise some limitations of the wavelet

lifting periodogram methodology. The small amplitude periodic signals are

lost in the decomposition due to the blurring over scale. EMD provides an or-

thogonal (or close to) decomposition and so does not suffer from this problem.

It is possible to correct the periodogram estimates using the methodology of
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Knight (2006), but at this time this is not feasible for our chosen application for

the reasons discussed in Section 5.5. Note that this does not mean that EMD

is superior to lifting for the analysis of palaeoclimate signals as demonstrated

by the analysis of the carbon dioxide series.

The other main difference between the two methods is that EMD is adap-

tive. Adaptivity is preferable in representing nonlinear data as non-adaptive

methods are generally characterised by the production of harmonics and a

spreading of energy over scales (Huang et al., 1998). However we saw from

the analysis of the carbon dioxide data that adaptivity in the EMD procedure

can be problematic when the data contains noise. It is possible to use an

adaptive wavelet lifting scheme, however methods for periodogram estimation

under this framework are not well-developed.

5.9 Summary

In this chapter we have explored the ‘spectral estimation for irregular designs’

methodology of Knight et al. (2010). Our contribution to this area arises

from our chosen application of palaeoclimatology. Time series from ice-cores,

and other palaeoclimate sources, are inherently irregularly spaced with the

sampling becoming coarser as we look further back in time.

Our application utilises a slightly different definition of the periodogram to

that used by Knight et al. (2010). We estimate the ordinates at each time point

and artificial scale using the average of the observed coefficients rather than

using a non parametric smoothing approach. Though the latter approach may

be beneficial in some situations, the simpler ‘averaging’ technique results in a

more intuitive measure of coherence when estimating the dependence between

two series in the next chapter.
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Given our chosen application, it is also very important to define a rela-

tionship between wavelet scale, as defined by the lifting scheme, and Fourier

frequency. This subject was discussed in Section 5.3 where we provided a

mapping between scale and frequency for periodograms computed using linear

prediction. We also showed that the relationship between scale and frequency

is dependent on the symmetry of the neighbours used at the prediction stage,

and proposed that coefficients generated using highly asymmetric neighbour

pairs should not be used to construct the final periodogram.

Overall, we reinforce the work of Knight et al. (2010), highlighting that

wavelet lifting is a promising new method for the analysis of irregularly sam-

pled time series. The method allows us to visualise the periodicities present in

palaeoclimate series, clearly capturing the major aspects of each signal. How-

ever there are limitations with the method, and we see from the application of

EMD that smaller amplitude, but important, periodic signals were lost in the

periodogram due to the ‘blurring over scale’.

Ideally we would like to be able to correct the periodogram to provide

clearer estimates. Knight et al. (2010) propose a correction procedure for

the raw lifting periodogram based on the formulation of the series as a LSW

process with missing observations and this subject provides a promising topic

for future work. Throughout our implementation we have concentrated on the

use of linear prediction with one neighbour either side for the prediction step

of the lifting scheme. The use of adaptive lifting for spectral estimation (Nunes

et al., 2006) also provides an interesting direction for further research.

Our analysis did not provide any extra information regarding high fre-

quency variation in the records. The detection of high frequency harmonics

would provide an extremely interesting scientific result, potentially providing

valuable insight into the mechanisms dominating climate change. This would

also highlight the benefits of lifting over other competing methods that rely

on pre-processing to a regular grid prior to analysis, and hence result in a

loss of information at high frequencies. This remains an important consider-
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ation for future work and advances are possible through application to other

data sets, including different climatic variables and observations from different

sites. Progress in this area is also possible through further advances in the

lifting periodogram methodology.
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Chapter 6

Bivariate spectral analysis for

irregular situations

As in the regularly-sampled setting, it is often the case that we observe more

than one time series and are interested not only in the individual spectral prop-

erties of these series but also in the dependence between the signals. Problems

of this kind are common in palaeoclimatology since ice-cores provide mea-

surements of several variables at each time point. For example, Section 6.4

considers the relationship between two different proxies for temperature. We

have seen that in the regularly sampled setting the bivariate LSW model can be

used to estimate the coherence between time series. However there is no well-

defined method for estimating the coherence between two irregularly spaced

time series. Potential approaches to this problem include that of Mondal and

Percival (2008), who state that their method for univariate ‘gappy’ time series

could be extended to bivariate situations. Also, Rilling et al. (2007) propose a

bivariate extension to the EMD methodology suitable for data sets where the

two components can be expressed as Cartesian coordinates of a point moving in

a two-dimensional space. This formulation makes it possible to define extrema

and signal envelopes for bivariate signals. While the standard methodology is

designed to extract zero-mean oscillating components, the bivariate extension

extracts zero-mean rotating components.
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6.1. The complex one coefficient at a time lifting scheme

Chapter 5 demonstrated that lifting provides an intuitive way of adapting

classical wavelet methodology to irregular designs. Based on the OCAAT lift-

ing scheme, Knight et al. (2010) define the NLT periodogram, providing an

analogue to the nondecimated wavelet periodogram that is suitable for irregu-

larly sampled signals. This chapter extends the ideas of the NLT periodogram

to the bivariate setting, providing estimates of the dependence between two

(possibly irregularly sampled) time series. This work consists of two main ad-

vancements to the methodology. Firstly, in order to estimate the phase between

the signals we define a complex one coefficient at a time lifting scheme, based

on the OCAAT scheme but with a modification to produce complex-valued co-

efficients at each stage. We then introduce the bivariate nondecimated lifting

framework. Lifting two series simultaneously enables the construction of a lift-

ing cross-periodogram, providing information on the dependence between the

series. We begin by detailing the proposed complex OCAAT lifting transform,

then describe its use in a bivariate NLT setting. This provides a full spectral

decomposition, including coherence and phase. The method is demonstrated

using a simulated example as well as real palaeoclimate data.

6.1 The complex one coefficient at a time lift-

ing scheme

The complex lifting scheme proposed in this section is motivated by the com-

plex wavelet transform (CWT) for regular data introduced by Kingsbury (2001).

The CWT is a dual transform and can be thought of in terms of two sepa-

rate branches. The two branches consist of separate discrete wavelet trans-

forms performed using two different (real) wavelets. The coefficients from one

branch of the transform represent the real part of the wavelet coefficient while

the coefficient from the second part of the transform represents the imaginary

part. Therefore, using two different real wavelets, the CWT provides a com-
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plex decomposition. The CWT can be compared to other discrete complex

wavelet methods such as that of Belzer et al. (1995) and Lina and Mayrand

(1995). These methods use complex wavelets which form orthogonal bases. In

contrast, the CWT is a redundant transform in which the real and imaginary

components of the wavelet individually form an orthogonal basis. This results

in a transform that is nearly shift invariant but with less redundancy than

the nondecimated DWT. Further details can be found in Kingsbury (1998),

Kingsbury (2001) and Selesnick et al. (2005).

The proposed complex lifting transform follows the principles employed by

the CWT, but in the context of wavelet lifting. Instead of using the DWT for

each branch of the transform, our methodology is based on the one coefficient

at a time lifting scheme of Jansen et al. (2009), ensuring that the method is

well adapted for irregular design situations. Since the scheme combines the

principles of the CWT with that of OCAAT lifting, we refer to the method as

complex one coefficient at a time (complex OCAAT) lifting.

The complex OCAAT scheme follows the standard OCAAT scheme but at

each prediction stage the algorithm proceeds following two different prediction

methods, producing two detail coefficients, λ and µ, which represent the real

and imaginary parts of the transform. The two prediction schemes are defined

by their associated filters, L and M. At this stage the scheme is introduced

using an abstract choice of the filters, but choice of the two prediction filters

is discussed further in Section 6.1.1.

Having produced two coefficients using the filters L and M, the update

stage then proceeds using just the first filter, L. Therefore, unlike the CWT,

the complex OCAAT scheme does not consist of two completely separate

branches, as the same updating step is used for each branch. The proposed

complex OCAAT lifting scheme is computed as follows:

• Split: Choose a point to be lifted according to some specification. The

point to be lifted at stage n is denoted jn.
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6.1. The complex one coefficient at a time lifting scheme

• Predict: The real and complex detail coefficients are found by predicting

using the filters L and M, according to

λjn = cn,jn −
∑
i∈Jn

lni cn,i, (6.1)

µjn = mn
jncn,jn −

∑
i∈Jn

mn
i cn,i, (6.2)

where Jn is the set of neighbours, {lni }i∈Jn∪jn and {mn
i }i∈Jn∪jn are the

prediction weights associated with filters L and M, and lnjn = 1. Note

that while equation (6.1) is identical to the predict step of the standard

OCAAT lifting scheme (equation (2.23)), the second predict step as given

by equation (6.2) takes a slightly different form. The difference is that

the formulation in this chapter does not require the prediction weights

associated with the removal point mn
jn to be 1. The detail coefficient ob-

tained from scheme M is therefore not necessarily the difference between

the observed value and the value predicted by the neighbours. This mod-

ified formulation provides a generalisation of the standard scheme which

allows more flexibility in the choice of filter pairs. Since we update ac-

cording to scheme L, this modification does not affect the update step.

The full complex valued wavelet coefficient is found by combining the

details from the two different schemes to give

djn = λjn + iµjn . (6.3)

• Update: The scaling coefficients and integrals of the neighbouring points

are then updated according to filter L:

cn−1,i = cn,i + bni djn ,

In−1,i = In,i + lni In,jn ∀i ∈ Jn,
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where bni are the update weights associated with filter L, as given by the

standard OCAAT scheme.

The proposed complex OCAAT scheme is illustrated in Figure 6.1. For

comparative purposes, Figure 6.2 is also included, illustrating an alternative

scheme that consists of two separate branches. Choosing to update with just

one filter (as in Figure 6.1) ensures that throughout the algorithm there is

just one set of smooth coefficients, associated with one set of integrals. In

the updating step the weights are dependent on the prediction method and

so for the scheme depicted in Figure 6.2 the coefficients at each stage will

be different, and associated with different integrals. Since the integrals are

used as a measure of scale this means that coefficients at the same stage of

the algorithm, but from different branches, could (depending on the choice of

filters) be associated with different scales i.e αL
jn 6= αM

jn . This is not an issue

with the CWT procedure for regularly spaced data as the scale of the wavelets

at a given stage is consistent between the two DWT schemes. The issue is

bypassed in our formulation by updating according to just one of the filters as

shown in Figure 6.1, ensuring that the wavelet coefficients produced by each

scheme are associated with the same scale i.e. xjn → (λjn , µjn , αjn).

Since at each stage the update step proceeds using prediction scheme L,

this also means that the ordering of the filters is important; interchanging

L and M would mean updating with a different filter, leading to a different

transform. Though the design of two completely separate branches is possible

in concept, the design of such a scheme would be difficult due to the issues

mentioned above. Using just one filter for the updating step also simplifies the

filter design issue making it easier to ensure that the prediction weights of the

the filter L are positive. This issue is discussed in further detail in the next

section, where we introduce specific choices for the filters L and M.
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6.1. The complex one coefficient at a time lifting scheme

Figure 6.1: The complex OCAAT lifting scheme. The black lines correspond
to the prediction and update steps of the standard OCAAT lifting scheme
and the blue lines indicate the extra prediction step required for the complex
scheme.

Figure 6.2: An alternative complex OCAAT lifting scheme, consisting of two
separate branches with updating occurring in both. Starting with the same
data vector cn, the coefficients at later stages, cn−i, cn−i

∗, may be associated
with different scales.
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6.1.1 Filters for the complex lifting scheme

Implementation of the complex OCAAT scheme relies on suitable choice of the

filter pair L and M. As discussed in Section 5.3 certain schemes are favourable

for spectral estimation. In particular, it is preferable to have positive weights

on the neighbours in the prediction scheme. Negative prediction weights cause

problems when updating the integrals as the integral is no longer a mono-

tonically increasing value. Since we update using prediction scheme L, this

consideration applies only to the choice of filter L.

In designing the filter pairs we therefore start by defining filter L, choosing a

filter which is well suited to spectral analysis. For this reason we concentrate on

schemes which specify the use of linear prediction with symmetric neighbours

for the leading prediction scheme (L). The filter design problem is thus reduced

to defining a second filter, M. Since this filter is not used in the updating

procedure, there is no restriction that the weights of the neighbours must be

positive.

In choosing the second filter, we want to ensure that it provides different

information about the local structure than that produced using the filter L.

In the regularly sampled CWT methodology, Kingsbury (2001) states that

ideally the real and imaginary components of the wavelet should form a Hilbert

transform pair, and hence be orthogonal to each other. In practice this is not

possible with compactly supported wavelets and so the design of filters for

the CWT involves a balance between meeting this criteria and ensuring that

the wavelets are compactly supported. In our implementation we specify that

the two filters should be orthogonal to each other. Note that this is not the

same as specifying that the wavelets associated with each prediction scheme

should be orthogonal to each other, but this choice still results in an accurate

quantification of phase in the examples considered at the end of this Chapter.

This specification is explored in further detail in Section 6.2.4.

Given the choice of filter for the leading prediction scheme, the remaining
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task is in designing a suitable orthogonal filter for the second prediction scheme,

M. We now outline two possible filter pairs that can be used with the complex

OCAAT lifting scheme.

Linear prediction with one neighbour either side

Consider the case where the real coefficients are obtained using a linear pre-

diction scheme with one neighbour either side. The first filter is given by

L = (l1, 1, l3),

where l1, l3 > 0, l1 + l3 = 1, and the exact values are determined by the

sampling of the data. A second, orthogonal filter, is then constructed as

M = (m1,m2,m3),

such that m1+m3 = m2 to ensure anhilation of constants, l1m1+m2+l3m3 = 0

to provide orthogonality and l21 + 1 + l23 = m2
1 + m2

2 + m2
3 to provide equal

weighting to the coefficients of each scheme. This can be solved by setting

m1 = Rm3, m2 = (1 +R)m3, m3,

where R = l1−2
l1+1

and m3 = l1+1√
3

. If the time series is evenly spaced, then at

the first stage of the algorithm we have L = (1/2, 1, 1/2) and the filter for

the imaginary coefficients is given by M = (−m3, 0,m3) = (−
√

3/2, 0,
√

3/2).

Therefore the second scheme is effectively looking at the difference between

the neighbouring values.

For the removal of observation jn the filter L provides the real component

of the detail coefficient, denoted λjn , and the filter M provides the complex-

valued component of the detail coefficient, denoted µjn . Using the notation

introduced in Section 5.3, we can describe the relationship between scale and

frequency for the coefficients in terms of the scale, α, at which we see a peak
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I=P/4 I=P/2

Figure 6.3: Relationship between the integral and maximum value of the asso-
ciated detail coefficients for the prediction schemes defined by filters L (blue)
and M (red), here shown for a sine wave of period 10. The integrals are shown
by the double solid lines and the detail coefficients by the dashed lines. For
scheme L the coefficients are maximised by considering an integral of P/2 and
for scheme M the coefficients are maximised by considering an integral of P/4.

in the coefficients for a Fourier wave of period P . Writing the coefficients

from each scheme as |λ| = λ(α, x), and |µ| = µ(α, x), provides the following

relationships to frequency

{α : λ(α) ≥ λ(β), β ∈ R+} = P/2,

{α : µ(α) ≥ µ(β), β ∈ R+} = P/4,

where λ(α) and µ(α) are the arithmetic averages over x of λ(α, x) and µ(α, x),

for each value of α. This relationship is also illustrated in Figure 6.3, which

for a sine wave with period 10, indicates for both schemes the integrals that

provide the largest valued detail coefficients.

Linear prediction with two neighbours either side

Another example of a possible filter pair is the case where the real coefficients

are obtained using a linear prediction scheme with two neighbours either side.
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6.1. The complex one coefficient at a time lifting scheme

In this case the real valued filter is given by

L = (l1, l2, 1, l4, l5),

where l1, l2, l4, l5 are defined by the standard OCAAT scheme and l1 + l2 + l4 +

l5 = 1 to ensure anhilation of constants. The second filter can be defined by

setting

M = (m1,m2,m3,m4,m5),

such that l1m1 + l2m2 +m3 + l4m4 + l5m5 = 0 and m1 +m2 +m4 +m5 = m3.

Combining the two equations gives

m1(l1 + 1) +m2(l2 + 1) +m4(l4 + 1) +m5(l5 + 1) = 0.

One possible solution is to solve the two equalities

m1(l1 + 1) +m5(l5 + 1) = 0, m2(l2 + 1) +m4(l4 + 1) = 0.

This provides the following set of weights for the second filter:

m1, m2 = m1, m3 = (R1 +R2 + 2)m1, m4 = R2m2, m5 = R1m1,

where R1 = −(l1+1)
(l5+1)

, R2 = −(l2+1)
(l4+1)

, and we have further assumed that m2 = m1.

We can ensure that m2
1 +m2

2 +m2
3 +m2

4 +m2
5 = l21 + l22 + 1 + l24 + l25 by setting

m1 =

√
l21 + l22 + l24 + l25 + 1

2(R2
1 +R2

2 +R1R2 + 2R1 + 2R2)
.

If the data sampling is even, then at the first stage of the algorithm we have

M = (1/4, 1/4, 1, 1/4, 1/4), R1 = R2 = −1 and M = (m1,m1, 0,−m1,−m1) =

(
√

5/4,
√

5/4, 0,−
√

5/4,−
√

5/4). Similarly to the one neighbour either side

scheme, this filter is essentially looking at the difference between the average of

the left hand side neighbours and the average of the right hand side neighbours.
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Using this scheme, the detail coefficients |λ| = λ(α, x), and |µ| = µ(α, x),

obtained from filters L and M, have the following relationships to frequency

{α : λ(α) ≥ λ(β), β ∈ R+} = 0.29P,

{α : µ(α) ≥ µ(β), β ∈ R+} = 0.15P.

6.1.2 The complex nondecimated lifting periodogram

Section 5.1 reviewed the use of the OCAAT lifting scheme to provide a non-

decimated lifting transform (NLT), and Section 5.2 then reviewed the use of

the NLT transform to define a periodogram. Similarly, the complex OCAAT

lifting scheme can also be used to provide a nondecimated transform and to

construct the periodogram. Since our method essentially combines the prin-

ciples of the CWT with that of the NLT methodology, we call it the complex

nondecimated lifting transform (CNLT) and refer to the resulting periodogram

as the CNLT periodogram.

Recall that the NLT proceeds using repeated applications of the OCAAT

lifting scheme with different random trajectories, Tp for p = 1, ..., P . Thus for

each removal location, xk, where k = 1, ..., T , the NLT provides a set of details

{dpxk}p=1,...,P where dpxk is the coefficient at location xk, obtained from trajectory

Tp. The CNLT is obtained by replacing the standard OCAAT scheme with

the modified complex scheme. In the complex setting, a similar set of detail

coefficients is obtained, but each detail is complex valued; dpxk = λpxk + µpxki.

As with the real-valued lifting transform, the periodogram is found by

discretising the wavelet coefficients according to the allocated set of artificial

scales and then averaging the squared coefficients in each group.

Definition 6.1.1. For each time point, xk, k ∈ 1, .., n defined at scale li for

i ∈ 1, .., J∗, the raw lifting periodogram as defined by the complex lifting
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6.2. The bivariate complex nondecimated lifting transform

scheme is given by

CIxk(li) = mean{|dpxk |
2 : αpxk ∈ l

i},

= mean{(λpxk)2 : αpxk ∈ l
i}+ mean{(µpxk)2 : αpxk ∈ l

i}.

Note the presence of the C in this notation to distinguish the periodogram

given by the complex lifting scheme from the standard lifting periodogram

of Definition 5.2.1. The periodogram implied by the complex lifting scheme

consists of the sum of the wavelet periodograms of the two individual lifting

schemes as defined by filters L and M (updating according to L). If the purpose

of analysis is to provide a spectral estimate for a univariate time series, then it

is preferable to form the periodogram using the real-valued NLT as this avoids

mixing lifting schemes and so will generally result in a spectral estimate with

less blurring over scale. This is discussed in further detail in Section 6.2.1. Our

main interest in the complex lifting method arises in the multivariate setting

which we now introduce.

6.2 The bivariate complex nondecimated lift-

ing transform

This section extends the complex nondecimated lifting transform to the bi-

variate setting in order to estimate the dependence between two irregularly

sampled time series. Although it is possible to define bivariate measures us-

ing the standard real-valued lifting transform, as demonstrated later, complex

methods are preferable as this allows for the estimation of the phase between

the series. The proposed bivariate nondecimated lifting transform follows the

complex OCAAT scheme, but with two time series instead of one. The two

series X(1), X(2) are assumed to contain observations on exactly the same

(possibly irregular) time grid x1, ..., xn. Series of this kind are common in

palaeoclimatology as ice core samples provide measures of several different
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Chapter 6. Bivariate spectral analysis for irregular situations

variables.

In the bivariate complex nondecimated lifting transform (bivariate CNLT)

the two series are lifted simultaneously, using the same set of trajectories

{Tp}p∈1,..,P . This ensures that there is an exact correspondence between the

coefficients of each series; i.e. for each coefficient of series X(1) there is a coeffi-

cient of series X(2) at exactly the same location and scale. The coefficients are

lifted according to the complex OCAAT scheme, producing complex valued

detail coefficients. The wavelet coefficients at a given stage, n, and trajectory,

p, of the bivariate complex OCAAT scheme are denoted

1dpjn = 1λpjn + 1µpjni (6.4)

2dpjn = 2λpjn + 2µpjni (6.5)

where the λ are found from the first prediction scheme using filter L and the

µ are found using the second orthogonal prediction scheme with filter M. For

the removal of point jn on trajectory p, we have xjn → (1dpjn ,
2dpjn , α

p
jn

) =

(1λpjn ,
1µpjn ,

2λpjn ,
2µpjn , α

p
jn

).

After repeated application of the complex OCAAT scheme, using the same

set of trajectories for both series, we obtain for each time point, xk, two sets of

detail coefficients; {1dpxk}p=1,...,P and {2dpxk}p=1,...,P . These coefficients are used

to estimate the lifting cross-periodogram, the cross-spectral analogue to the

CNLT periodogram introduced in Definition 6.1.1.

Definition 6.2.1. For each time point, xk, k ∈ 1, .., n defined at scale li for

i ∈ 1, .., J∗, the raw lifting cross-periodogram is given by

I(1,2)
xk

(li) = mean{1dpxk
2dpxk : αpxk ∈ l

i},

where 1dpjn = 1λpjn + 1µpjni and 2dpjn = 2λpjn + 2µpjni are the complex valued

wavelet coefficients obtained through the CNLT scheme.

The CNLT cross-periodogram consists of combinations of coefficients from
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6.2. The bivariate complex nondecimated lifting transform

each series and provides information about the relationship between the sig-

nals. Unlike the CNLT periodogram, its bivariate counterpart is complex-

valued. Similarly to the classical Fourier cross-spectrum methodology reviewed

in Section 2.3.1, the CNLT cross-periodogram can be separated into its real and

imaginary parts to define the CNLT co-periodogram and the CNLT quadra-

ture periodogram. As demonstrated later, these quantities together with the

individual lifting spectra of each process, can be used to produce an estimate of

the coherence and phase between the two series. Following the methodology

from classical Fourier analysis, the CNLT co- and quadrature periodograms

are defined as follows:

Definition 6.2.2. For each time point, xk, k ∈ 1, .., n defined at scale li for

i ∈ 1, .., J∗, the complex NLT co-periodogram and quadrature periodogram

are given by

cxk(li) = mean{1λpxk
2λpxk : αpxk ∈ l

i}+ mean{1µpxk
2µpxk : αpxk ∈ l

i},

qxk(li) = mean{1µpxk
2λpxk : αpxk ∈ l

i} −mean{1λpxk
2µpxk : αpxk ∈ l

i}.

These estimates, along with the individual periodograms of each series,

1Ixk(li) and 2Ixk(li), are smoothed over time using equation (5.4) to give

1Ĩxk(li), 2Ĩxk(li), c̃xk(li), q̃xk(li). The smoothed periodogram quantities are then

used to calculate the bivariate measures of cross-periodogram, phase, and co-

herence:

ĈSxk(li) =
√
c̃xk(li)2 + q̃xk(li)2, (6.6)

φ̂xk(li) = tan−1
(−q̃xk(li)

c̃xk(li)

)
, (6.7)

ρ̂xk(li) =
ĈSxk(li)√

1Ĩxk(li)2Ĩxk(li)
. (6.8)

In the regularly sampled setting the smoothing step was essential in form-
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Chapter 6. Bivariate spectral analysis for irregular situations

ing the coherence, as otherwise the resulting coherence would be one at all

points. This is not the case in the bivariate lifting implementation as forma-

tion of the lifting periodogram (and related quantities) already incorporates

some amount of smoothing due to the discretisation of the continuous scale

measure. Choosing to discretise over a smaller number of scales implies a larger

amount of smoothing since each artificial scale will contain a larger number of

coefficients. Smoothing over time as well as scale serves to reduce the variance

of the estimates, providing a clearer visualisation of the characteristics of the

data.

The CNLT cross-periodogram provides a measure of the dependence be-

tween the series, but its magnitude is affected by the individual CNLT peri-

odograms of the signals. As in the regularly sampled setting, it is therefore

preferable to normalise this quantity. We call this normalised quantity the

CNLT coherence. The estimated lifting coherence satisfies 0 ≤ ρ̂xk(li) ≤ 1.

Note that this would not necessarily be the case if the CNLT periodogram and

cross periodograms had been constructed using nonparametric regression as

in Knight et al. (2010). Modifying the formulation of the periodogram simply

to look at the average of the wavelet coefficients at each artificial scale, as in

Definition 5.2.1, ensures that by the Cauchy-Schwarz inequality the resulting

coherence is between 0 and 1. It is also possible to estimate a measure of phase

between the series, providing an indication of any time lag between the signals.

This interpretation is considered in further detail using simulated examples in

Section 6.2.3.

In the regularly sampled LSW setting the periodogram estimates were cor-

rected before forming the LSW coherence, providing an unbiased estimate of

linear dependence. Note that we do not perform any form of correction in the

irregularly sampled formulation and so the resulting estimates contain a bias,

or ‘blurring effect’, due to the redundancy in the transform. Correction in the

univariate framework has been considered by Knight et al. (2010) and provides

an interesting possibility for future research.
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6.2. The bivariate complex nondecimated lifting transform

6.2.1 Relationship to frequency and filter design

As previously, the integral at the last point before it is removed from the

algorithm is used to provide a measure of scale for the wavelet coefficients.

However, as noted in Section 5.3, different prediction schemes provide different

mappings to frequency. Since the complex OCAAT scheme combines two

different prediction schemes, this can lead to difficulties when interpreting the

CNLT periodogram and cross periodogram.

Consider the case of a sinusoid of a known frequency. Scheme L provides the

coefficients |λ| = λ(α, x), and scheme M provides the coefficients |µ| = µ(α, x),

using the notation introduced in Section 5.3. The coefficients from each scheme

have different relationships to frequency, given by

{α : λ(α) ≥ λ(β), β ∈ R+} = P1

{α : µ(α) ≥ µ(β), β ∈ R+} = P2

where λ(α) and µ(α) are the arithmetic averages over x of λ(α, x) and µ(α, x),

for each value of α. Here we use the location at which the coefficients peak

(i.e. P1, P2) to describe the relationship to frequency. The CNLT periodograms

and co-periodogram are composed of the sum of the wavelet coefficients from

the two schemes, and the quadrature periodogram contains products of the

coefficients. This gives a further two relationships to frequency:

{α : λ+ µ(α) ≥ λ+ µ(β), β ∈ R+} = P3

{α : λµ(α) ≥ λµ(β), β ∈ R+} = P4

where λ+ µ(α) and λµ(α) are the averages over x of λ(α, x) + µ(α, x) and

λ(α, x)µ(α, x) for each value of α. This information is summarised in Ta-

ble 6.1, which considers the possible combinations of the real and imaginary

coefficients.

To give a specific example, we consider the choice of prediction filters for
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spectral component coefficients peak of coefficients

λ(α) P1

µ(α) P2

CIxk , cxk λ+ µ(α) P3

qxk λµ(α) P4

Table 6.1: Relationship to frequency for the different bivariate CNLT peri-
odogram components: periodogram (CIxk), co-periodogram (cxk) and quadra-
ture periodogram (qxk). The cross periodogram, phase and coherence are
formed using combinations of these elements. Here we use the value of α that
maximises the wavelet coefficients to denote the relationship to frequency.

the one neighbour either side linear prediction scheme as proposed in Section

6.1.1. As described in Section 6.1.1, this scheme gives P1 = P
2

, P2 = P
4

. The

individual periodograms and the co-periodogram are composed of the sum of

the wavelet coefficients from the different schemes and show a peak at P3. The

quadrature periodogram contains products of the coefficients from filters L

and M and peaks at P4. This information is illustrated in Figure 6.4, where

we see that for this particular scheme P3 = P4 = P
3

. This means that the

CNLT periodograms, co-periodogram and quadrature periodogram all show

the same relationship between scale and frequency. As shown by equations

(6.6)-(6.8), these three quantities are the only components needed to form the

cross-periodogram, coherence and phase. Therefore, although for this scheme

P1 6= P2, the resulting measures of the cross-periodogram, coherence and phase

still provide meaningful and interpretable estimates.

Note that this result is dependent on our choice of the weight m3 in the

prediction filter of M. Changing the value of m3, essentially moves the value of

P4, as this alters the relative weightings of the real and imaginary coefficients.

As illustrated in Figure 6.5, this means that the position of the peak of coeffi-

cients associated with the periodograms and co-periodogram will change. For

m3 6= l1+1√
3

, it follows that P3 6= P4, and interpretation of the cross periodogram,

coherence and phase becomes unclear.

This example shows that in the bivariate CNLT scheme it is not essential

that the real and imaginary coefficients exhibit the same relationship to fre-
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Figure 6.4: Relationship between detail coefficients and integral for m3 = l1+1√
3

.
This ensures that combining the coefficients by addition and multiplication
results in the same relationship to frequency, as shown by the overlap of the
red and green lines.
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Figure 6.5: Relationship between detail coefficients and integral for m3 = 1.
Using this weighting the coefficients λpxk and µpxk have the same maximum
value. However combining the coefficients by addition or multiplication leads
to different relationships to frequency, as shown by the different positions of
the red and green lines in this example.
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quency (i.e. it is not essential that P1 = P2). Instead it is sufficient to ensure

that P3 = P4. This means that the CNLT periodograms, co-periodogram and

quadrature periodogram all show the same relationship between scale and fre-

quency and result in meaningful estimates of the cross-periodogram, coherence

and phase. However, though it is not essential, the stronger requirement that

P1 = P2 would also be beneficial. If the coefficients from the real and imag-

inary branches of the complex OCAAT scheme had the same relationship to

frequency, this would result in clearer estimates of the CNLT periodogram.

Ensuring the same scale-frequency relationship for the two prediction schemes

is less practical to implement as it imposes further requirements on the fil-

ter design, but research into the design of prediction filters for the complex

OCAAT scheme provides another interesting area for further research.

6.2.2 Example on simulated data

To demonstrate the complex bivariate NLT, we now provide an example using

the one neighbour either side filters described in Section 6.1.1. The method is

applied to a simulated bivariate time series as illustrated in Figure 6.6. The

series are observed on an irregular grid with mean sampling rate 2. The first

signal consists of a superposition of sine waves with periods 10, 30 and 70,

while the second series consists of a sine wave with period 30 which has a time

lag of 6 units introduced half way through the series, i.e.

X
(1)
t = sin(

2πt

10
) + sin(

2πt

30
) + sin(

2πt

70
) + Z

(1)
t ,

X
(2)
t = sin(

2π(t− τ)

30
) + Z

(2)
t ,

where diff(t) ∈ {n/10 : n = 10, 11, ..., 30}, mean(Xt) = 2 and Z
(1)
t , Z

(2)
t are

i.i.d normal random variables with mean zero and variance 0.2. The time lag

is given by τ = 0 for t < 200 and τ = 6 for t ≥ 200.
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Figure 6.6: Simulated bivariate time series with irregular sampling. X(1) is
shown in black and X(2) in red. The vertical line indicates the location where
the time lag is introduced.

The coherence and associated quantities, as estimated by the complex bi-

variate NLT scheme, are shown in Figure 6.8. For these estimates we have

used a sample of 2500 randomly sampled trajectories, formed the periodogram

using J∗ = 25 artificial scales, and smoothed over time using a smoothing

window of width 60. The coherence provides a clear visualisation of the de-

pendence between the two series, with a peak in the coherence occurring at

a scale equivalent to a Fourier period of 30. The time lag that is introduced

halfway through the second signal is also clearly captured by the estimate of

phase between the series. The phase is approximately zero for the first half of

the series, then shows a marked increase for the second half. The individual

periodograms of each series are plotted in Figures 6.8a and b. Although the

scheme provides an accurate description of the dependence between the series,

the individual periodograms do not provide clear descriptions of the variation

within each signal. From Figure 6.8a it is not possible to separate the three

different periods of variation.

Figure 6.7 shows the coherence between the two series as estimated us-
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ing the real-valued bivariate scheme. This is similar to the complex bivariate

scheme but without the extra step in the OCAAT lifting procedure that pro-

duces the complex-valued coefficients. Although the dependence between the

series is clearly demonstrated for the first half of the series, the coherence is

not detected after the time delay is introduced. The real-valued scheme can

therefore be used to estimate the dependence between two irregularly sampled

series, but only if the series are in perfect alignment. Although the real-valued

bivariate lifting transform is not ideal for estimating the dependence between

series, the individual spectra of each series (subplots a and b) provide a much

clearer representation of the series than is provided by the periodogram com-

puted using the complex-valued scheme. This is because the complex NLT

periodograms contain coefficients from two different prediction schemes. The

prediction schemes have different scale-frequency relationships and so mixing

the coefficients results in a blurring over scale.

Also note the difference in the right hand Fourier period axis between the

two plots. The wavelet coefficients derived from the complex-valued scheme

have a different scale-frequency relationship to those derived from the real-

valued scheme.
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Figure 6.7: Estimation of coherence using the real-valued bivariate lifting
scheme. a) periodogram of X(1) b) periodogram of X(2), c) cross periodogram
and d) coherence.
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Figure 6.8: Estimation of coherence and phase using the complex lifting
scheme. a) periodogram of X(1) b) periodogram of X(2), c) co-periodogram d)
quadrature periodogram e) coherence and f) phase.

160



6.2. The bivariate complex nondecimated lifting transform

6.2.3 Physical meaning of phase

This section considers the interpretation of phase, as given by the one neigh-

bour either side filter pairs described in Section 6.1.1. Two simulated examples

are provided, illustrating the effect of introducing a time delay between the

two observed signals.

Example 1: Purely random time lagged signal

The first example considers a bivariate time series where X(1) is a purely

random process and X(2) is a time lagged version of X(1):

X
(1)
t = Zt,

X
(2)
t = X

(1)
t−τ ,

where diff(t) = 1 for all t and Zt are i.i.d normal random variables with mean

zero and variance 1.

The coherence and phase are estimated for for time lags of τ = 0, 1, 2 and

5. Since the series are stationary, the estimates are averaged over the full

time range and the resulting measures are dependent only on scale, li, and the

magnitude of the time delay.

The estimated phase and coherence are shown in Figures 6.9 and 6.10.

These estimates were produced assuming a time series of length 400, using a

sample of 750 random trajectories, and discretising using 10 artificial scales

between 0 and 6. For τ = 0 the estimated coherence is 1 and the phase is zero

at all scales as expected. After introducing a time delay between the series,

the resulting phase shift becomes non-zero and the coherence is no longer 1.

The magnitude of the phase shift for each value of τ is a function of scale, with

the response varying as τ increases.
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Figure 6.9: Phase shift between X(1) and X(2) from example 1 as a function
of scale. The phase is estimated for τ = 0, 1, 2, 5 and averaged over time.
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Figure 6.10: Coherence between X(1) and X(2) from example 1 as a function
of scale. The coherence is estimated for τ = 0, 1, 2, 5 and averaged over time.
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6.2. The bivariate complex nondecimated lifting transform

Example 2: Sinusoid with time lag

The next example considers the effect of time lag on the estimation of coherence

and phase between two series with periodic variations. The series are given by

X
(1)
t = sin(

2πt

30
),

X
(2)
t = sin(

2π(t− τ)

30
),

where diff(t) ∈ {n/10 : n = 10, 11, ..., 30}, mean(Xt) = 2 and τ ∈ (0, 30). As

with the previous example, the series are stationary and so we average the

resulting estimates over the full time range.

The resulting coherence and phase for time shifts up to 15 are shown in

Figures 6.11 and 6.12 respectively. For these results we used a bivariate time

series of length 200, a sample of 750 trajectories, and discretised using 20

artificial scales between 1 and 5. For τ = 0 the signals are identical and so

the coherence is 1 at all scales, and the phase zero. An overall (summing over

time lags) peak in coherence is observed at a scale of log2(30/3), corresponding

to the period of variation in the data. The magnitude of the coherence, and

the response over scale, is affected by the magnitude of the time delay. The

coherence is lowest at time delays around 7.5 (P/4), and at these shifts the

peak at scale log2(30/3) is also more pronounced. At a time shift of 15 (P/2)

the signals are sign reversed versions of each other and, again, the observed

coherence is 1 at all scales. The estimated phase also shows an overall peak

at scale log2(30/3). The phase response varies as a function of time delay

and alternates between positive and negative values, with |φ(li)| maximised at

li = P/4. This is also illustrated in Figure 6.13 which shows the phase at scale

log2(30/3) as a function of time delay.
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Figure 6.11: Coherence between X(1) and X(2) from example 2 as a function of
scale, for various choices of τ . The vertical lines correspond to Fourier periods
of 30 and 60.
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Figure 6.12: Phase between X(1) and X(2) from example 2 as a function of
scale, for various choices of τ .
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Figure 6.13: Phase at scale log2(30/3), equivalent to a Fourier period of 30, as a
function of the time delay between the series. The red points show the resulting
estimates from the simulations and the black line indicates the observed trend.

6.2.4 Choice of filters

The filters were chosen by specifying the use of linear prediction for the first

filter, L, and then constructing the second filter, M, to be orthogonal to the

first. This ensures that the coefficients from the two prediction schemes provide

different local information about the signal.

To justify this choice of filter pairs, we consider what happens as the de-

pendence between the filters increases. Using the same time series as in the

simulated example of Section 6.2.2, the coherence and phase between the series

are estimated using the filters L and N where

N = dfL +
√

1− d2
fM.

Here df acts as a measure of dependence between the two filters. When df = 0

we have N = M so that the filters are orthogonal, and when df = 1 we have
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Figure 6.14: Coherence (plots a-d) and phase (plots e-h) for different degrees
of dependence between the filters; df = 0 (plots a and e), df = 0.5 (plots b
and f), df = 0.75 (plots c and g) and df = 0.9 (plots f and h).

166



6.3. Application to regularly sampled time series

N = L and the second filter is exactly the same as the first. As before, the

update stage proceeds using filter L.

The effects of varying the amount of dependence between the filters on the

resulting estimates of phase and coherence are demonstrated with respect to

the simulated data example of Section 6.2.2. As with the original example, we

have used a sample of 2500 randomly sampled trajectories, formed the peri-

odogram using 25 artificial scales, and smoothed over time using a smoothing

window of width 60. The estimates of coherence and phase for different choices

of df are shown in Figure 6.14. This shows that as the filters become more

dependent, the estimates of coherence and phase become less pronounced.

6.3 Application to regularly sampled time se-

ries

To compare the methods introduced in this chapter with those described in

Chapters 3 and 4, we now consider the application of both methods to a simu-

lated example with regular spacing of observations. The two time series have a

nonstationary coherence structure and a time varying phase relationship. The

signals are given by

X(1) = sin
(2πt

6

)
It∈(362,662) + sin

(2πt

30

)
+ Z

(1)
t ,

X(2) = 2 sin
(2πt

6

)
It∈(362,662) + sin

(2π(t+ τ)

30

)
+ Z

(2)
t ,

where τ = 0 for t ∈ (1, 256), τ = 3 for t ∈ (257, 512), τ = 6 for t ∈ (513, 768)

and τ = 9 for t ∈ (769, 1024). Zt are i.i.d. normal random variables with
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mean zero and variance 1. Both series contain a short burst of variation with

period 6, present in the middle section of the data, as well as a variation with

period 30. The phase relationship between the two series is nonstationary

since τ increases from 0 to 9 over the given time interval. The raw signals are

plotted in Figure 6.15. To compare the different methods, Table 6.2 outlines

the relationship between the dyadic scales as used in Chapters 3 and 4, Fourier

frequency, and wavelet lifting scale. The variation with period 6 is contained

within dyadic scale −1 and the variation with period 30 is contained within

scale −4.

The resulting LSW coherence estimate, using the methodology of Chapters

3 and 4, is illustrated in Figure 6.16a. Both the short burst at scale −2, and

the variation at scale −4 are clearly identified. However these results do not

provide any phase information about the signals and the coherence at scale

−4 decreases as the time delay between the signals increases.

The lifting coherence measure was estimated using a sample of 2000 tra-

jectories and smoothing the resulting periodogram using a smoothing window

of width 100. In Figure 6.16b the periodogram was constructed using a dis-

cretisation of J∗ = 6 scales within the chosen scale range, to provide a clear

comparison to the LSW coherence estimate. The lifting coherence measure

identifies the main features of the data but there is more leakage over scale

than shown by the unbiased LSW coherence estimate. However the lifting mea-

sure does have the advantage that the estimates are not restricted to dyadic

scales. To illustrate this, 6.16c shows the results from the same set of simula-

tions, discretised using 12 artificial scales instead of 6. The lifting methodology

also provides an estimate of the phase between the series as shown in Figure

6.16d. The nonstationary phase at coarser scales is clearly captured by this

estimate.
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Figure 6.15: Data for simulated example: X(1) (black) and X(2) (red)

wavelet scale Fourier frequency wavelet lifting scale
j f = 1/P α = log2(P/2) α = log2(P/3)
-1 0.250- 0.500 0-1 -0.6-0.4
-2 0.125 - 0.250 1-2 0.4-1.4
-3 0.063 - 0.125 2-3 1.4-2.4
-4 0.031 - 0.063 3-4 2.4-3.4
-5 0.016 - 0.031 4-5 3.4-4.4
-6 0.008 - 0.016 5-6 4.4-5.4
...

...
...

...

Table 6.2: Approximate relationship between wavelet scale, Fourier frequency
and wavelet lifting scale. The scale-frequency relationship for the wavelet
lifting scheme depends on the chosen prediction method and so we show the
relationships for two different lifting schemes; The univariate lifting scheme
using linear prediction with one neighbour either side (α = log2(P/2)), and
the bivariate scheme based on this filter (α = log2(P/3)).
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Figure 6.16: Estimated coherence for the data in Figure 6.15. a) LSW co-
herence b) wavelet lifting coherence using 6 artificial scales c) wavelet lifting
coherence using 12 artificial scales d) wavelet lifting phase using 12 artificial
scales.
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6.4. Application to real data

6.4 Application to real data

The bivariate NLT methodology is now demonstrated with application to a

stable isotope record from East Antarctica (Stenni et al., 2004). The series is

over 40 kyrs long, with measurements from 42.5 yrs BP to 44821 yrs BP. There

are 1417 observations in each series, with sampling differences ranging from

8.6 to 50.7 years. The record contains two different isotopic ratios which act

as proxies for temperature: δD is a function of the ratio of deuterium (2H) to

normal hydrogen (1H) and δ18O is a function of the ratio of 18O to 16O. The

two isotopic systems enable independent estimates of temperature, at least in

East Antarctica (Stenni et al., 2004). Estimating the coherence and phase

between these two temperature proxies provides interesting insights into their

roles as climate proxies. Any phase delay between the two signals would be of

particular interest.
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Figure 6.17: Time series of isotopic temperature proxies: a) deuterium (δD)
and b) oxygen (δ18O).
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Figure 6.18: Coherence (a) and phase (b) between the δD and δ18O series.
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6.5. Summary and further work

The hydrogen and oxygen proxy records are shown in Figures 6.17a and

6.17b. The dependence between the two proxies is obvious from these plots,

with both series showing the same overall trend and characteristics. The es-

timated coherence and phase between the two series is shown in Figure 6.18.

For these estimates we have used a sample of 5000 trajectories, formed the

periodogram using a discretisation of J∗ = 20 artificial scales, and smoothed

over time using a smoothing window of 1 kyr. The coherence between the

series is close to one at all time points, with a mean of 0.99 and range of 0.83

to 1.00. The phase has a mean of 0.00 and a range of −0.21 to 0.376. This

suggests that there is no time delay in the observations of the two different

temperature proxies.

No periodic variations were detected in the individual spectra of the series.

Because their length is just 40 kyrs, the series do not capture the documented

100 kyr saw tooth trend exhibited by climate records. The longest period of

variation captured by this data is shown by Figure 6.17 to be around 6 kyrs

and so this series is unable to capture even the shortest of the orbital forcing

signals, the precession cycle which has a period of 21 kyrs.

6.5 Summary and further work

In this chapter we extended the standard OCAAT lifting scheme to provide

complex valued coefficients. The complex OCAAT scheme was used in the

NLT framework to provide a complex-valued NLT transform. As with the

standard NLT transform, the complex version can be used to to construct a

periodogram for data observed on irregular sampling grids. The complex NLT

transform was also implemented in a bivariate lifting setting, allowing us to

define the complex NLT cross-periodogram which provides a measure of the

dependence between the two series. The NLT cross-periodogram was used to

define two further measures of dependence: the coherence and phase. Note

that this methodology is also applicable in a multivariate setting with more
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Chapter 6. Bivariate spectral analysis for irregular situations

than two time series. In this case the dependence can be assessed by taking

pairwise combinations of the signals.

Our methodology was demonstrated with respect to simulated data as well

as observed palaeoclimate records. With respect to the simulated data, we

showed that it is also possible to estimate the coherence between the series

using a real-valued lifting scheme. The real-valued bivariate lifting scheme

provided informative estimates of the coherence between the series when there

was no time delay, but all information on the dependence between the series

was lost when the signals were not in perfect alignment. Here the complex

valued scheme showed a clear improvement. The coherence between the series

was estimated accurately both before and after the introduction of a time shift

between the signals. Furthermore, the time shift was clearly captured by the

estimated phase spectrum.

The work of this chapter provides promising results on estimating the

dependence between series observed on an irregular grid; however there is

still much scope for further research and improvement. One limitation of our

methodology is highlighted by the problems encountered when estimating the

univariate complex NLT periodograms. The periodograms contain coefficients

from two different prediction schemes which have different scale-frequency rela-

tionships. This results in increased blurring over scale in the periodograms. It

would be preferable to implement a dual lifting scheme in which both branches

provide coefficients with the same scale-frequency relationship. The issue of

designing suitable filter pairs for the complex scheme presents an important

area for further research.

So far we have considered bivariate series that are irregularly sampled, but

we have been assuming that the irregular sampling grid is exactly the same for

each signal. Although this is a valuable tool in many situations, it would also

be useful to compare series that are observed on different irregular grids. For

example, it would be interesting to compare records from different sites. The

sampling rate of an observed ice core is dependent on many different variables
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6.5. Summary and further work

(e.g. snow accumulation rate, extraction method) and, as such, the observa-

tion grids from two different cores will never be the same. Preliminary work

in this area is positive, suggesting that it is possible to extend the methodol-

ogy presented in this section to estimate the dependence between two series

observed on separate irregular grids. Although it is beyond the scope of our

current work, this provides another interesting area for future study.
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Chapter 7

Conclusions

This thesis has considered the application of wavelet based methods for esti-

mating the characteristics of nonstationary time series observed on both regu-

lar and irregular sampling grids and in the presence of bivariate observations.

Three different situations are considered:

• Bivariate (Chapters 3 and 4)

• Irregularly spaced (Chapter 5)

• Bivariate and irregularly spaced (Chapter 6)

Chapters 3 and 4 introduce the locally stationary wavelet coherence which,

based on the NDWT, provides a method for estimating the dependence be-

tween two regularly sampled time series. Chapter 5 demonstrates how, based

on the NLT, we can estimate the spectral properties of irregularly sampled time

series. Finally, Chapter 6 combines the methodology of the previous chapters,

using the NLT in a bivariate setting to estimate the dependence between two

time series observed on irregular sampling grids. Chapter 6 therefore provides

a generalisation to the work of Chapters 3 and 4. To conclude, we now briefly

summarise the main themes and findings from each chapter and discuss some

directions for future work. Further discussions of each element of work are
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provided by the individual summaries at the end of each chapter.

Chapter 3 addresses the problem of estimating the dependence between two

nonstationary time series. This work was originally motivated by a problem

in neuroscience in which recordings are taken from two different areas of the

brain. In this setting the dependence between the series provides information

on the interaction between the brain regions.

In order to quantify this interaction, we introduced the bivariate LSW

process model. This parallels the univariate LSW model of Nason et al. (2000),

but allows for the potential correlation structure between the two series, as

given by the locally stationary wavelet coherence. The LSW coherence is a

novel measure of the dependence between two time series and we proposed

an estimation procedure for this quantity. In Chapter 4 it was seen that the

bias correction implied by the LSW formulation can lead to stability problems

with the estimator, and a robust method for ensuring the stability of the final

measure was proposed. Our methodology was applied to the original problem

from neuroscience, illustrating the practical use of the described techniques.

In its current form the bivariate LSW process model requires that the cross-

covariance between the two processes is maximised at a shift of τ = 0, and

that the two signals are therefore aligned. This is not the case if there is a

time shift between the signals, and so extension of the current formulation to

allow for time delays between the signals is an important topic for future work.

Chapter 5 considers the analysis of palaeoclimate signals that, unlike the time

series generated by the neuroscience experiment described in Chapters 3 and

4, have a naturally irregular sampling structure. Although we concentrate on

the analysis of palaeoclimate signals, this is also an important problem in other

applications, including experimental results that contain missing observations.

The first section of Chapter 5 reviews the work of Knight et al. (2010) in

using the nondecimated lifting transform (based on the OCAAT lifting scheme
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of Jansen et al. (2009)) to estimate the periodogram of irregularly sampled

signals. The resulting NLT periodogram provides an analogue to the NDWT

periodogram for regularly sampled data that was used in Chapters 3 and 4. We

then explore the relationship between scale (as defined by the OCAAT lifting

scheme) and Fourier frequency, which is important for the practical application

of these techniques. It is also shown that the use of the lifting integral as a

measure of scale can lead to a blurring in the resulting periodogram.

The use of empirical mode decomposition (EMD), another function decom-

position method suitable for irregularly spaced time series, is also considered.

Through the use of EMD we are able to draw attention to some of the limi-

tations of the NLT periodogram method, in that small amplitude signals may

be lost in the resulting periodogram due to the blurring over scale. This intro-

duces an important area for further work, to produce periodogram estimates

with less leakage over scale. Knight et al. (2010) propose a correction scheme

for the raw periodogram estimates based on the formulation of the problem as

an LSW process with missing observations; however this methodology is com-

putationally intensive and so at this time we are unable to implement these

techniques in our chosen application.

Chapter 6 extends the methodology introduced in Chapter 5 to estimate the

dependence and phase between two signals observed on the same irregularly

sampled grids. This is interesting in our chosen applications as palaeoclimate

proxies typically contain information on more than one variable.

In order to provide an estimate of the phase between the signals, we first

propose an extension to the OCAAT lifting scheme (Jansen et al., 2009) that

was used in Chapter 5, to produce complex-valued wavelet coefficients at each

stage. The complex OCAAT scheme is then implemented in a bivariate lift-

ing framework to produce the complex NLT cross-periodogram. Analogous

to the wavelet cross-periodogram introduced in Chapter 3, the NLT cross-

periodogram provides information about the dependence between the series

178



but without relying on the regular spacing of observations. This measure,

along with the individual periodograms of each series, was used to define a

measure of coherence and phase between the signals. The bivariate lifting

methodology was then demonstrated with respect to simulated examples as

well as observed palaeoclimate records. We also compared the methods of this

chapter with those introduced in Chapters 3 and 4 using a simulated exam-

ple with regular sampling, highlighting the strengths and weaknesses of each

technique. The LSW coherence estimate showed less blurring over scale than

the bivariate lifting coherence estimate but suffered from the lack of phase

information.

The work of this chapter provides promising results on estimating the de-

pendence between series observed at irregular sampling intervals, but there is

still scope for further research and improvement. One possible area for future

research is the design of suitable filters for the prediction stage of the complex

OCAAT scheme. In particular, the use of two prediction schemes with the

same scale-frequency relationship would result in estimates with an improved

localisation of characteristics. Also, we have considered bivariate series that

are irregularly sampled, but we have been assuming that the irregular sam-

pling grid is exactly the same for each signal. Although this is a valuable tool

in many situations, it would also be useful to compare series that are observed

on separate irregular grids.
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Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler,

U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T.

(2008). High-resolution carbon dioxide concentration record 650,000-800,000

years before present. Nature, 453:379–382.

186



Bibliography

Mallat, S. et al. (1989). A theory for multiresolution signal decomposition: The

wavelet representation. IEEE transactions on pattern analysis and machine

intelligence, 11(7):674–693.

Maraun, D. and Kurths, J. (2004). Cross wavelet analysis: significance testing

and pitfalls. Nonlinear Processes in Geophysics, 11:505–514.

McGuffie, K. and Henderson-Sellers, A. (2005). A climate modelling primer.

Wiley.

Mélice, J., Coron, A., and Berger, A. (2001). Amplitude and frequency modu-

lations of the Earth’s obliquity for the last million years. Journal of Climate,

14(6):1043–1054.

Meyer, Y. (1992). Wavelets and Operators. Cambridge University Press.

Milankovitch, M. (1969). Canon of insolation and the ice-age problem. Israel

Program for Scientific Translations.

Mondal, D. and Percival, D. (2008). Wavelet variance analysis for gappy time

series. Annals of the Institute of Statistical Mathematics, pages 1–24.

Murty, K. (1988). Linear Complementarity, Linear and Nonlinear Program-

ming. Internet edition.

Nason, G. (1996). Wavelet shrinkage using cross-validation. Journal of the

Royal Statistical Society. Series B (Methodological), pages 463–479.

Nason, G. (2008). Wavelet methods in statistics with R. Springer.

Nason, G., Kovac, A., and Maechler, M. (2008). Wavethresh: Software to

perform wavelet statistics and transforms. R package version 4.2-1.

Nason, G. and Silverman, B. (1994). The discrete wavelet transform in S.

Journal of Computational and Graphical Statistics, 3(2):163–191.

187



Bibliography

Nason, G. and Silverman, B. (1995). The stationary wavelet transform and

some applications. In Antoniadis, A. and Oppeheim, G., editors, Wavelets

and Statistics, volume 103 of Lecture Notes in Statistics, pages 281–300. New

York: Springer-Verlag.

Nason, G. and von Sachs, R. (1999). Wavelets in time-series analysis. Philo-

sophical Transactions: Mathematical, Physical and Engineering Sciences,

357(1760):2511–2526.

Nason, G., von Sachs, R., and Kroisandt, G. (2000). Wavelet processes and

adaptive estimation of the evolutionary wavelet spectrum. Journal of the

Royal Statistical Society. Series B (Statistical Methodology), 62(2):271–292.

Nunes, M. and Knight, M. (2008). Adlift: An adaptive lifting scheme algorithm.

R package version 1.1-1.

Nunes, M., Knight, M., and Nason, G. (2006). Adaptive lifting for nonpara-

metric regression. Statistics and Computing, 16(2):143–159.

Ombao, H., Raz, J., Sachs, R., and Malow, B. (2001). Automatic Statistical

Analysis of Bivariate Nonstationary Time Series in Memory of Jonathan A.

Raz. Journal of the American Statistical Association, 96(454).

Ombao, H., Raz, J., von Sachs, R., and Guo, W. (2002). The SLEX model

of a Non-Stationary random process. Annals of the Institute of Statistical

Mathematics, 54(1):171–200.

Ombao, H. and Van Bellegem, S. (2008). Evolutionary coherence of nonsta-

tionary signals. IEEE Transactions on Signal Processing, 56(6):2259–2266.

Ombao, H., von Sachs, R., and Guo, W. (2005). SLEX Analysis of Multivariate

Nonstationary Time Series. Journal of the American Statistical Association,

100(470):519–532.

188



Bibliography

Pegram, G., Peel, M., and McMahon, T. (2008). Empirical mode decomposi-

tion using rational splines: an application to rainfall time series. Proceedings

of the Royal Society A, 464(2094):1483.

Percival, D. B. and Walden, A. T. (2000). Spectral Analysis of Time Series.

Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical

and Probabilistic Mathematics).

Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J.-M., Basile, I., Ben-

ders, M., Chappellaz, J., Davis, M., Delayque, G., Delmotte, M., Kotlyakov,

V., Legrand, M., Lipenkov, V., Lorius, C., Ppin, L., Ritz, C., Saltzman, E.,

and Stievenard, M. (1999). Climate and atmospheric history of the past

420,000 years from the vostok ice core, Antarctica. Nature, 399:429–436.

Priestley, M. (1965). Evolutionary spectra and non-stationary processes. Jour-

nal of the Royal Statistical Society. Series B (Methodological), 27(2):204–237.

Priestley, M. (1981). Spectral Analysis of Time Series. Academic Press.

Priestley, M. B. (1988). Nonlinear and Nonstationary Time Series. Academic

Press Inc.

Priestley, M. B. and Tong, H. (1973). On the analysis of bivariate Non-

Stationary processes. Journal of the Royal Statistical Society. Series B,

35(2):153–166. ArticleType: primary article / Full publication date: 1973 /

Copyright 1973 Royal Statistical Society.

Qi, Y., Minka, T., and Picard, R. (2002). Bayesian spectrum estimation of

unevenly sampled nonstationary data. In IEEE international conference on

acoustics speech and signal processing, volume 2. Citeseer.

Rilling, G. and Flandrin, P. (2009). Sampling effects on the empirical mode

decomposition. Advances in Adaptive Data Analysis, 1(1):43–59.

189



Bibliography
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